13 research outputs found

    Monogamy, polygamy, and other properties of entanglement of purification

    Full text link
    For bipartite pure and mixed quantum states, in addition to the quantum mutual information, there is another measure of total correlation, namely, the entanglement of purification. We study the monogamy, polygamy, and additivity properties of the entanglement of purification for pure and mixed states. In this paper, we show that, in contrast to the quantum mutual information which is strictly monogamous for any tripartite pure states, the entanglement of purification is polygamous for the same. This shows that there can be genuinely two types of total correlation across any bipartite cross in a pure tripartite state. Furthermore, we find the lower bound and actual values of the entanglement of purification for different classes of tripartite and higher-dimensional bipartite mixed states. Thereafter, we show that if entanglement of purification is not additive on tensor product states, it is actually subadditive. Using these results, we identify some states which are additive on tensor products for entanglement of purification. The implications of these findings on the quantum advantage of dense coding are briefly discussed, whereby we show that for tripartite pure states, it is strictly monogamous and if it is nonadditive, then it is superadditive on tensor product states.Comment: 12 pages, 2 figures, Published versio

    Remote Creation of Quantum Coherence via Indefinite Causal Order

    Full text link
    Quantum coherence is a prime resource in quantum computing and quantum communication. Quantum coherence of an arbitrary qubit state can be created at a remote location using maximally entangled state, local operation and classical communication. However, if there is a noisy channel acting on one side of the shared resource, then, it is not possible to create perfect quantum coherence remotely. Here, we present a method for the creation of quantum coherence at a remote location via the use of entangled state and indefinite causal order. We show this specifically for the superposition of two completely depolarizing channels, two partially depolarizing channels and one completely depolarizing channel along with a unitary operator. We find that when the indefinite causal order of channels act on one-half of the entangled pair, then the shared state looses entanglement, but can retain non-zero quantum discord. This finding may have some interesting applications on its own where discord can be consumed as a resource. Our results suggest that the indefinite causal order along with a tiny amount of quantum discord can act as a resource in creating non-zero quantum coherence in the absence of entanglement.Comment: 9 pages, 4 figures, Accepted in Quantum Information Processin

    Footprints of quantum pigeons

    Get PDF
    We show that in the mathematical framework of the quantum theory the classical pigeonhole principle can be violated more directly than previously suggested, i.e., in a setting closer to the traditional statement of the principle. We describe how the counterfactual reasoning of the paradox may be operationally grounded in the analysis of the tiny footprints left in the environment by the pigeons. After identifying the drawbacks of recent experiments of the quantum pigeonhole effect, we argue that a definitive experimental violation of the pigeonhole principle is still needed and propose such an implementation using modern quantum computing hardware: a superconducting circuit with transmon qubits

    Footprints of Quantum Pigeons

    Get PDF
    We show that in the mathematical framework of the quantum theory, the classical pigeonhole principle can be violated more directly than previously suggested, i.e., in a setting closer to the traditional statement of the principle. We describe how the counterfactual reasoning of the paradox may be operationally grounded in the analysis of the tiny footprints left in the environment by the pigeons. After identifying the drawbacks of recent experiments of the quantum pigeonhole effect, we argue that a definitive experimental violation of the pigeonhole principle is still needed and propose such an implementation using modern quantum computing hardware: a superconducting circuit with transmon qubits

    Failed attempt to escape from the quantum pigeon conundrum

    Get PDF
    A recent criticism by Kunstatter et al. [Phys. Lett. A 384, 126686 (2020)] of a quantum setup violating the pigeon counting principle [Aharonov et al. PNAS 113, 532 (2016)] is refuted. The quantum nature of the violation of the pigeonhole principle with pre- and postselection is clarified.Comment: to be published in Physics Letters
    corecore