4 research outputs found

    Quantum Key Distribution Using Quantum Faraday Rotators

    Full text link
    We propose a new quantum key distribution (QKD) protocol based on the fully quantum mechanical states of the Faraday rotators. The protocol is unconditionally secure against collective attacks for multi-photon source up to two photons on a noisy environment. It is also robust against impersonation attacks. The protocol may be implemented experimentally with the current spintronics technology on semiconductors.Comment: 7 pages, 7 EPS figure

    How to hide a secret direction

    Get PDF
    We present a procedure to share a secret spatial direction in the absence of a common reference frame using a multipartite quantum state. The procedure guarantees that the parties can determine the direction if they perform joint measurements on the state, but fail to do so if they restrict themselves to local operations and classical communication (LOCC). We calculate the fidelity for joint measurements, give bounds on the fidelity achievable by LOCC, and prove that there is a non-vanishing gap between the two of them, even in the limit of infinitely many copies. The robustness of the procedure under particle loss is also studied. As a by-product we find bounds on the probability of discriminating by LOCC between the invariant subspaces of total angular momentum N/2 and N/2-1 in a system of N elementary spins.Comment: 4 pages, 1 figur
    corecore