46 research outputs found

    Renormalization group approach to multiscale modelling in materials science

    Full text link
    Dendritic growth, and the formation of material microstructure in general, necessarily involves a wide range of length scales from the atomic up to sample dimensions. The phase field approach of Langer, enhanced by optimal asymptotic methods and adaptive mesh refinement, copes with this range of scales, and provides an effective way to move phase boundaries. However, it fails to preserve memory of the underlying crystallographic anisotropy, and thus is ill-suited for problems involving defects or elasticity. The phase field crystal (PFC) equation-- a conserving analogue of the Hohenberg-Swift equation --is a phase field equation with periodic solutions that represent the atomic density. It can natively model elasticity, the formation of solid phases, and accurately reproduces the nonequilibrium dynamics of phase transitions in real materials. However, the PFC models matter at the atomic scale, rendering it unsuitable for coping with the range of length scales in problems of serious interest. Here, we show that a computationally-efficient multiscale approach to the PFC can be developed systematically by using the renormalization group or equivalent techniques to derive appropriate coarse-grained coupled phase and amplitude equations, which are suitable for solution by adaptive mesh refinement algorithms

    A dopaminergic switch for fear to safety transitions

    Get PDF
    Overcoming aversive emotional memories requires neural systems that detect when fear responses are no longer appropriate. The midbrain ventral tegmental area (VTA) dopamine system has been implicated in reward and more broadly in signalling when a better than expected outcome has occurred. This suggests that it may be important in guiding fear to safety transitions. We report that when an expected aversive outcome does not occur, activity in midbrain dopamine neurons is necessary to extinguish behavioral fear responses and engage molecular signalling events in extinction learning circuits. Furthermore, a specific dopamine projection to the nucleus accumbens medial shell is partially responsible for this effect. By contrast, a separate dopamine projection to the medial prefrontal cortex opposes extinction learning. This demonstrates a novel function for the canonical VTA-dopamine reward system and reveals opposing behavioural roles for different dopamine neuron projections in fear extinction learning

    Safety out of control: dopamine and defence

    Full text link

    Virtual high throughput screening in new lead identification

    No full text
    Drug discovery continues to be one of the greatest contemporary challenges and rational application of modelling approaches is the first important step to obtain lead compounds, which can be optimised further. Virtual high throughput screening (VHTS) is one of the efficient approaches to obtain lead structures for a given target. Strategic application of different screening filters like pharmacophore mapping, shape-based, ligand-based, molecular similarity etc., in combination with other drug design protocols provide invaluable insights in lead identification and optimization. Screening of large databases using these computational methods provides potential lead compounds, thus triggering a meaningful interplay between computations and experiments. In this review, we present a critical account on the relevance of molecular modelling approaches in general, lead optimization and virtual screening methods in particular for new lead identification. The importance of developing reliable scoring functions for non-bonded interactions has been highlighted, as it is an extremely important measure for the reliability of scoring function. The lead optimization and new lead design has also been illustrated with examples. The importance of employing a combination of general and target specific screening protocols has also been highlighted

    Photoacoustic and X-ray photoelectron spectroscopic studies in reduced lead zirconate titanate ceramics

    No full text
    Lead zirconate titanate (PZT) is known to become a semiconductor after reduction in a hydrogen atmosphere. An attempt is made here to characterize the reduced, as well as the unreduced, PZT system with the help of photoacoustic (PA) spectroscopy and X-ray photoelectron spectroscopy (XPS) and to obtain useful information regarding its electronic behaviour. The band gap of the unreduced PZT is estimated to be 3.56 eV from PA spectra which is observed to remain unaffected after doping with lanthanum, niobium and strontium. XPS results indicate the presence of metallic lead in PZT after hydrogen reduction whereas other elements remain unaffected. This becomes responsible for the change in its conductivity and also for the increased absorption in the visible range which is reflected in the PA spectra. The electronic structure based on PA spectra is also presented for the reduced and unreduced PZT systems
    corecore