2 research outputs found

    Romanian 14 GHz ECR Ion Source RECRIS: main features and first operation

    Get PDF
    RECRIS, the romanian 14 GHz ECR ion source, designed to be used as a facility for atomic physics and material studies with highly charged ion beams, have been recently completed. The general design [1], the main characteristics and the detailed measurements of the radial [2] and axial magnetic fields are presented. A maximum axial magnetic field of 1.4 T and a mirror ratio of up to 4 were obtained. The dependence of the mirror ratio and of the ECR plasma zone volume on the configuration of the axial magnetic system configuration was studied. The first operation of this source is described, showing a good stability

    Metal-dielectric structures for high charge state ion production in ECR plasma

    Get PDF
    Metal-dielectric (MD) structures of pure (99.999%) aluminum foils were previously studied [1, 2] in the National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania showing high secondary electron emission properties. Consequently, 26 mm diameter disks of such structures (Al-Al2O3) were tested in the ECR ion source of the Institut fuer Kernphysik (IKF) der J. W. Goethe Universitat, Frankfurt/Main, Germany, allowing to demonstrate their ability to significantly increase the ECRIS performances in what concerns the production of high charge state ions [3]. New experiments carried on in Bucharest on a special facility [2] stressed out the possibility to develop high emissive MD structures starting from lower purity (99%) aluminum foils. This result allowed us to make a special cylinder of 1 mm wall thickness electrolytically treated so that only the inner face had a MD structure layer while the external surface remained metallic. Such a cylinder introduced in the plasma chamber of an ECR ion source provides a high rate of secondary electrons that enhance the ECR plasma electron density while its metallic external surface provides a good electric and thermal contact with the plasma chamber. The tests performed with such a MD aluminum cylinder in the IKF 14 GHz ECR ion source, successfully demonstrated the possibility to shift the ECRIS output toward very high charge states (Ar16+) due to the strong secondary electron emission of the MD inner surface of the cylinder
    corecore