4,942 research outputs found
Design of a Feedback-Controlled Wireless Converter for Electric Vehicle Wireless Charging Applications
Electric vehicles (EVs) have played an important role in the modern transporta-tion system in recent years. However, current generations of EVs face unsolved drawbacks such as short driving range, long charging time, and high cost due to expensive battery systems. Wireless Power Transfer (WPT) is a promising technology that is able to mitigate the drawbacks EVs are facing. This paper focuses on investigating and building a complete high-efficiency WPT system that is capable of efficiently charging electric vehicles. The goal is to design and ap-ply two different configurations of compensation networks to the WPT system. In this paper, the two compensation network configurations studied are LLC and LCC. After comparing their operational characteristics and efficiencies, the most suitable configuration is proposed. Moreover, a phase-shifted controller is applied in order to regulate the power transferred through the WPT system
On-orbit assembly using superquadric potential fields
The autonomous on-orbit assembly of a large space structure is presented using a method based on superquadric artificial potential fields. The final configuration of the elements which form the structure is represented as the minimum of some attractive potential field. Each element of the structure is then considered as presenting an obstacle to the others using a superquadric potential field attached to the body axes of the element. A controller is developed which ensures that the global potential field decreases monotonically during the assembly process. An error quaternion representation is used to define both the attractive and superquadric obstacle potentials allowing the final configuration of the elements to be defined through both relative position and orientation. Through the use of superquadric potentials, a wide range of geometric objects can be represented using a common formalism, while collision avoidance can make use of both translational and rotation maneuvers to reduce total maneuver cost for the assembly process
Spacecraft formation-flying using potential functions
A group of small spacecraft able to change their relative position and attitude through the use of the potential function method is discussed. The spacecraft shapes, sizes and manoeuvring capabilities are not identical, although all are assumed to manoeuvre using continuous thrusters. A hyperbolic form of the attractive potential function is used to reduce actuator effort by using natural orbital motion to approaching the goal configuration. A superquadric repulsive potential with 3D a rigid object representation is then used to provide an accurate representation of the shape of spacecraft in the potential function. As the spacecraft start away from their goal, a parabolic attractive potential is inefficient as the control force increases with distance from the goal. Using a hyperbolic attractive potential, the control force is independent of the distance to goal, ensuring smooth manoeuvring towards the goal with a bound actuator effort
Direction of Arrival with One Microphone, a few LEGOs, and Non-Negative Matrix Factorization
Conventional approaches to sound source localization require at least two
microphones. It is known, however, that people with unilateral hearing loss can
also localize sounds. Monaural localization is possible thanks to the
scattering by the head, though it hinges on learning the spectra of the various
sources. We take inspiration from this human ability to propose algorithms for
accurate sound source localization using a single microphone embedded in an
arbitrary scattering structure. The structure modifies the frequency response
of the microphone in a direction-dependent way giving each direction a
signature. While knowing those signatures is sufficient to localize sources of
white noise, localizing speech is much more challenging: it is an ill-posed
inverse problem which we regularize by prior knowledge in the form of learned
non-negative dictionaries. We demonstrate a monaural speech localization
algorithm based on non-negative matrix factorization that does not depend on
sophisticated, designed scatterers. In fact, we show experimental results with
ad hoc scatterers made of LEGO bricks. Even with these rudimentary structures
we can accurately localize arbitrary speakers; that is, we do not need to learn
the dictionary for the particular speaker to be localized. Finally, we discuss
multi-source localization and the related limitations of our approach.Comment: This article has been accepted for publication in IEEE/ACM
Transactions on Audio, Speech, and Language processing (TASLP
Analyzing the Digital Traces of Political Manipulation: The 2016 Russian Interference Twitter Campaign
Until recently, social media was seen to promote democratic discourse on
social and political issues. However, this powerful communication platform has
come under scrutiny for allowing hostile actors to exploit online discussions
in an attempt to manipulate public opinion. A case in point is the ongoing U.S.
Congress' investigation of Russian interference in the 2016 U.S. election
campaign, with Russia accused of using trolls (malicious accounts created to
manipulate) and bots to spread misinformation and politically biased
information. In this study, we explore the effects of this manipulation
campaign, taking a closer look at users who re-shared the posts produced on
Twitter by the Russian troll accounts publicly disclosed by U.S. Congress
investigation. We collected a dataset with over 43 million election-related
posts shared on Twitter between September 16 and October 21, 2016, by about 5.7
million distinct users. This dataset included accounts associated with the
identified Russian trolls. We use label propagation to infer the ideology of
all users based on the news sources they shared. This method enables us to
classify a large number of users as liberal or conservative with precision and
recall above 90%. Conservatives retweeted Russian trolls about 31 times more
often than liberals and produced 36x more tweets. Additionally, most retweets
of troll content originated from two Southern states: Tennessee and Texas.
Using state-of-the-art bot detection techniques, we estimated that about 4.9%
and 6.2% of liberal and conservative users respectively were bots. Text
analysis on the content shared by trolls reveals that they had a mostly
conservative, pro-Trump agenda. Although an ideologically broad swath of
Twitter users was exposed to Russian Trolls in the period leading up to the
2016 U.S. Presidential election, it was mainly conservatives who helped amplify
their message
A framework for identifying uncertainties in long-term digital preservation
With the current expansion in digital information comes an increasing need to preserve such assets. The ENSURE (Enabling knowledge Sustainability, Usability and Recovery for Economic value) pro-ject, a research project under the European Community's Seventh Framework Programme, is the par-ent project to this research area and its aim is to conduct advanced research to address the challenges of Long Term Digital Preservation (LTDP) to ensure the successful preservation, availability and ac-cessibility of preserved data in the future. Focusing on identifying uncertainties in the LTDP activities and their impact on cost and economic performance of digital preservation systems, this paper dis-cusses a framework to identify uncertainties in LTDP for business sectors interested
A cost engine system for estimating whole-life cycle cost of long-term digital preservation activities
This research paper presents a cost engine system that estimates the whole life cycle cost of long-term digital preservation (LTDP) activities using cloud-based technologies. A qualitative research methodology has been employed and the activity based costing (ABC) technique has been used to develop the cost model. The unified modelling language (UML) notation and the object oriented paradigm (OOP) are utilised to design the architecture of the software system. In addition, the service oriented architecture (SOA) style has been used to deploy the function of the cost engine as a web service in order to ensure its accessibility over the web. The cost engine is a module that is part of a larger digital preservation system and has been validated qualitatively through experts’ opinion. Its benefits are realised in the accurate and detailed estimation of cost for companies wishing to employ LTDP activities
Design of Adiabatic MTJ-CMOS Hybrid Circuits
Low-power designs are a necessity with the increasing demand of portable
devices which are battery operated. In many of such devices the operational
speed is not as important as battery life. Logic-in-memory structures using
nano-devices and adiabatic designs are two methods to reduce the static and
dynamic power consumption respectively. Magnetic tunnel junction (MTJ) is an
emerging technology which has many advantages when used in logic-in-memory
structures in conjunction with CMOS. In this paper, we introduce a novel
adiabatic hybrid MTJ/CMOS structure which is used to design AND/NAND, XOR/XNOR
and 1-bit full adder circuits. We simulate the designs using HSPICE with 32nm
CMOS technology and compared it with a non-adiabatic hybrid MTJ/CMOS circuits.
The proposed adiabatic MTJ/CMOS full adder design has more than 7 times lower
power consumtion compared to the previous MTJ/CMOS full adder
- …