1,606 research outputs found
Modeling currents at satellite altitudes
A mathematical formalism for modeling the poloidal magnetic field and current density at satellite altitudes is presented
Does the geoid drift west?
In 1970 Hide and Malin noted a correlation of about 0.8 between the geoid and the geomagnetic potential at the Earth's surface when the latter is rotated eastward in longitude by about 160 degrees and the spherical harmonic expansions of both functions are truncated at degree 4. From a century of magnetic observatory data, Hide and Malin inferred an average magnetic westward drift rate of about 0.27 degrees/year. They attributed the magnetic-gravitational correlation to a core event at about 1350 A.D. which impressed the mantle's gravity pattern at long wavelengths onto the core motion and the resulting magnetic field. The impressed pattern was then carried westward 160 degrees by the nsuing magnetic westward drift. An alternative possibility is some sort of steady physical coupling between the magnetic and gravitational fields (perhaps migration of Hide's bumps on the core-mantle interface). This model predicts that the geoid will drift west at the magnetic rate. On a rigid earth, the resulting changes in sea level would be easily observed, but they could be masked by adjustment of the mantle if it has a shell with viscosity considerably less than 10 to the 21 poise. However, steady westward drift of the geoid also predicts secular changes in g, the local acceleration of gravity, at land stations. These changes are now ruled out by recent independent high-accuracy absolute measurements of g made by several workers at various locations in the Northern Hemisphere
The scientific case for magnetic field satellites
To make full use of modern magnetic data and the paleomagnetic record, we must greatly improve our understanding of how the geodynamo system works. It is clearly nonlinear, probably chaotic, and its dimensionless parameters cannot yet be reproduced on a laboratory scale. It is accessible only to theory and to measurements made at and above the earth's surface. These measurements include essentially all geophysical types. Gravity and seismology give evidence for undulations in the core-mantle boundary (CMB) and for temperature variations in the lower mantle which can affect core convection and hence the dynamo. VLBI measurements of the variations in the Chandler wobble and length of day are affected by, among other things, the electromagnetic and mechanical transfer of angular momentum across the CMB. Finally, measurements of the vector magnetic field, its intensity, or its direction, give the most direct access to the core dynamo and the electrical conductivity of the lower mantle. The 120 gauss coefficients of degrees up to 10 probably come from the core, with only modest interference by mantle conductivity and crustal magnetization. By contrast, only three angular accelerations enter the problem of angular momentum transfer across the CMB. Satellite measurements of the vector magnetic field are uniquely able to provide the spatial coverage required for extrapolation to the CMB, and to isolate and measure certain magnetic signals which to the student of the geodynamo represent noise, but which are of great interest elsewhere in geophysics. Here, these claims are justified and the mission parameters likely to be scientifically most useful for observing the geodynamo system are described
Report of the panel on geopotential fields: Magnetic field, section 9
The objective of the NASA Geodynamics program for magnetic field measurements is to study the physical state, processes and evolution of the Earth and its environment via interpretation of measurements of the near Earth magnetic field in conjunction with other geophysical data. The fields measured derive from sources in the core, the lithosphere, the ionosphere, and the magnetosphere. Panel recommendations include initiation of multi-decade long continuous scalar and vector measurements of the Earth's magnetic field by launching a five year satellite mission to measure the field to about 1 nT accuracy, improvement of our resolution of the lithographic component of the field by developing a low altitude satellite mission, and support of theoretical studies and continuing analysis of data to better understand the source physics and improve the modeling capabilities for different source regions
Geotomography with solar and supernova neutrinos
We show how by studying the Earth matter effect on oscillations of solar and
supernova neutrinos inside the Earth one can in principle reconstruct the
electron number density profile of the Earth. A direct inversion of the
oscillation problem is possible due to the existence of a very simple analytic
formula for the Earth matter effect on oscillations of solar and supernova
neutrinos. From the point of view of the Earth tomography, these oscillations
have a number of advantages over the oscillations of the accelerator or
atmospheric neutrinos, which stem from the fact that solar and supernova
neutrinos are coming to the Earth as mass eigenstates rather than flavour
eigenstates. In particular, this allows reconstruction of density profiles even
over relatively short neutrino path lengths in the Earth, and also of
asymmetric profiles. We study the requirements that future experiments must
meet to achieve a given accuracy of the tomography of the Earth.Comment: 35 pages, 7 figures; minor textual changes in section
New Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints
We present new interstellar dust models which have been derived by
simultaneously fitting the far-ultraviolet to near-infrared extinction, the
diffuse infrared (IR) emission and, unlike previous models, the elemental
abundance constraints on the dust for different interstellar medium abundances,
including solar, F and G star, and B star abundances. The fitting problem is a
typical ill-posed inversion problem, in which the grain size distribution is
the unknown, which we solve by using the method of regularization. The dust
model contains various components: PAHs, bare silicate, graphite, and amorphous
carbon particles, as well as composite particles containing silicate, organic
refractory material, water ice, and voids. The optical properties of these
components were calculated using physical optical constants. As a special case,
we reproduce the Li & Draine (2001) results, however their model requires an
excessive amount of silicon, magnesium, and iron to be locked up in dust: about
50 ppm (atoms per million of H atoms), significantly more than the upper limit
imposed by solar abundances of these elements, about 34, 35, and 28 ppm,
respectively. A major conclusion of this paper is that there is no unique
interstellar dust model that simultaneously fits the observed extinction,
diffuse IR emission, and abundances constraints.Comment: 70 pages, 23 figures, accepted for publication in the Astrophysical
Journal Supplemen
Optimized Discretization of Sources Imaged in Heavy-Ion Reactions
We develop the new method of optimized discretization for imaging the
relative source from two particle correlation functions. In this method, the
source resolution depends on the relative particle separation and is adjusted
to available data and their errors. We test the method by restoring assumed pp
sources and then apply the method to pp and IMF data. In reactions below 100
MeV/nucleon, significant portions of the sources extend to large distances (r >
20 fm). The results from the imaging show the inadequacy of common Gaussian
source-parametrizations. We establish a simple relation between the height of
the pp correlation function and the source value at short distances, and
between the height and the proton freeze-out phase-space density.Comment: 36 pages (inc. 9 figures), RevTeX, uses epsf.sty. Submitted to Phys.
Rev.
- …