87 research outputs found
A Switching Mechanism in Doxorubicin Bioactivation Can Be Exploited to Control Doxorubicin Toxicity
Although doxorubicin toxicity in cancer cells is multifactorial, the enzymatic bioactivation of the drug can significantly contribute to its cytotoxicity. Previous research has identified most of the components that comprise the doxorubicin bioactivation network; however, adaptation of the network to changes in doxorubicin treatment or to patient-specific changes in network components is much less understood. To investigate the properties of the coupled reduction/oxidation reactions of the doxorubicin bioactivation network, we analyzed metabolic differences between two patient-derived acute lymphoblastic leukemia (ALL) cell lines exhibiting varied doxorubicin sensitivities. We developed computational models that accurately predicted doxorubicin bioactivation in both ALL cell lines at high and low doxorubicin concentrations. Oxygen-dependent redox cycling promoted superoxide accumulation while NADPH-dependent reductive conversion promoted semiquinone doxorubicin. This fundamental switch in control is observed between doxorubicin sensitive and insensitive ALL cells and between high and low doxorubicin concentrations. We demonstrate that pharmacological intervention strategies can be employed to either enhance or impede doxorubicin cytotoxicity in ALL cells due to the switching that occurs between oxygen-dependent superoxide generation and NADPH-dependent doxorubicin semiquinone formation
Inhibition of unwinding and ATPase activities of pea MCM6 DNA helicase by actinomycin and nogalamycin
Pea mini-chromosome maintenance 6 (MCM6) single subunit (93 kDa) forms homohexamer (560 kDa) and contains an ATP-dependent and replication fork stimulated 3′ to 5′ DNA unwinding activity along with intrinsic DNA-dependent ATPase and ATP-binding activities1 (Plant Mol Biol 2010; DOI: 10.1007/s11103-010-9675-7). Here, we have determined the effect of various DNA-binding agents, such as actinomycin, nogalamycin, daunorubicin, doxorubicin, distamycin, camptothecin, cyclophosphamide, ellipticine, VP-16, novobiocin, netropsin, cisplatin, mitoxantrone and genistein on the DNA unwinding and ATPase activities of the pea MCM6 DNA helicase. The results show that actinomycin and nogalamycin inhibited the DNA helicase (apparent Ki values of 10 and 1 µM, respectively) and ATPase (apparent Ki values of 100 and 17 µM, respectively) activities. Although, daunorubicin and doxorubicin also inhibited the DNA helicase activity of pea MCM6, but with less efficiency; however, these could not inhibit the ATPase activity. These results suggest that the intercalation of the inhibitors into duplex DNA generates a complex that impedes translocation of MCM6, resulting in the inhibitions of the activities. This study could be useful in our better understanding of the mechanism of plant nuclear DNA helicase unwinding
- …