1,168 research outputs found

    Beam-dynamic effects at the CMS BRIL van der Meer scans

    Get PDF
    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is responsible for the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS experiment. The project is engaged in operating and developing new detectors (luminometers), adequate for the experimental conditions associated with high values of instantaneous luminosity delivered by the CERN LHC. BRIL operates several detectors based on different physical principles and technologies. Precise and accurate measurements of the delivered luminosity is of paramount importance for the CMS physics program. The absolute calibration of luminosity is achieved by the van der Meer method, which is carried out under specially tailored conditions. This paper presents models used to simulate of beam-dynamic effects arising due to the electromagnetic interaction of colliding bunches. These effects include beam-beam deflection and dynamic-β effect. Both effects are important to luminosity measurements and influence calibration constants at the level of 1-2%. The simulations are carried out based on 2016 CMS van der Meer scan data for proton-proton collisions at a center-of-mass energy of 13 TeV

    Transverse modulation of the positron beam density by using the laser standing wave

    Get PDF
    Recently it was shown that charged particles motion in the field of standing electromagnetic wave can undergo the features similar to the particles channeling in crystals. When a charged particle enters the channels formed by electromagnetic standing waves at a small angle to the node (anti-node) planes its motion represents namely the oscillations between two neighboring planes. The phenomenon is mostly known as channeling in a lattice of the standing waves. Obviously, this effect can be used to handle beams in accelerator physics, more general, for the beam shaping with the specific properties. The advantage of the plane wave channeling is the absence of inelastic scattering that takes place in a crystal. The possibility to re-distribute the current density of particles in the beam by means of the laser standing wave is demonstrated

    Thermal damage at short electron bunches passage through a thin target

    Get PDF
    The thin target could be used for beam diagnostics by means the radiation that is induced by interaction of beam particles with target matter. The electron beams used in modern applications (as, for example, modern FELs) have very large brightness, small emittance as well as very short bunch length. For example, the bunch length of XFEL is about of 25 um at bunch charge order of 1 nC and with electrons energy of 17.5 GeV. The passage of this powerful short bunches could damage the target or even completely destroy it. In the presented work the train of such bunches passages through the target is investigated. It is shown the target works in extreme regime close to phase transition temperature

    The thermal stress at short electron bunches passage through a thin target

    Get PDF
    The thin target could be used for beam diagnostics by means the radiation that is induced by interaction of beam particles with target matter. The electron beams used in modern applications (as, for example, modern FELs) have very large brightness, small emittance as well as very short bunch length. For example, the bunch length of XFEL is about of 25 um at bunch charge order of 1 nC and with electrons energy of 17.5 GeV. The passage of this powerful short bunches could damage the target or even completely destroy it. In the presented work the train of such bunches passages through the target is investigated. It is shown the target works in extreme regime close to phase transition temperature

    Formation of Gold Nanoparticle Self-Assembling Films in Various Polymer Matrices for SERS Substrates

    Get PDF
    Surface-enhanced Raman spectroscopy (SERS) is regarded as a versatile tool for studying the composition and structure of matter. This work has studied the preparation of a SERS substrate based on a self-assembling plasmonic nanoparticle film (SPF) in a polymer matrix. Several synthesis parameters for the SPF are investigated, including the size of the particles making up the film and the concentration and type of the self-assembling agent. The result of testing systems with different characteristics is discussed using a model substance (pseudo isocyaniniodide). These models can be useful in the study of biology and chemistry. Research results contain the optimal parameters for SPF synthesis, maximizing the SERS signal. The optimal procedure for SPF assembly is determined and used for the synthesis of composite SPFs within different polymer matrices. SPF in a polymer matrix is necessary for the routine use of the SERS substrate for various types of analytes, including solid samples or those sensitive to contamination. Polystyrene, polyvinyl alcohol (PVA), and polyethylene are investigated to obtain a polymer matrix for SPF, and various methods of incorporating SPF into a polymer matrix are being explored. It is found that films with the best signal enhancement and reproducibility were obtained in polystyrene. The minimum detectable concentration for the SERS substrate obtained is equal to 10 10 M We prepared a SERS substrate with an analytical enhancement factor of 2.7 104, allowing an increase in the detection sensitivity of analyte solutions of five orders of magnitude

    Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrix

    Get PDF
    The optical properties of lead sulfide quantum dots (QDs) of different sizes embedded in a nanoporous silicate glass matrix (NSM) are investigated by steady-state and transient photoluminescence spectroscopy. The use of this matrix allows the fabrication of samples with reproducible optical characteristics, for both isolated and close-packed QDs. Low-temperature PL analysis of isolated QDs with sizes of 3.7 and 4.5 nm shows that the coefficient of temperature shift of the PL position changes sign with reducing QD size because of size-dependent contributions from thermal expansion, mechanical strain, and electron–phonon coupling. The PL intensity is determined by size-dependent splitting of the lowest energy electronic state

    Beyond Charge Transfer: The impact of auger recombination and FRET on PL quenching in an rGO-QDs system

    Get PDF
    PL intensity quenching and the PL lifetime reduction of fluorophores located close to gra‐ phene derivatives are generally explained by charge and energy transfer processes. Analyzing the PL from PbS QDs in rGO/QD systems, we observed a substantial reduction in average PL lifetimes with an increase in rGO content that cannot be interpreted solely by these two processes. To explain the PL lifetime dependence on the rGO/QD component ratio, we propose a model based on the Auger recombination of excitations involving excess holes left in the QDs after the charge transfer process. To validate the model, we conducted additional experiments involving the external engi‐ neering of free charge carriers, which confirmed the role of excess holes as the main QD PL quench‐ ing source. A mathematical simulation of the model demonstrated that the energy transfer between neighboring QDs must also be considered to explain the experimental data carefully. Together, Au‐ ger recombination and energy transfer simulation offers us an excellent fit for the average PL life‐ time dependence on the component ratio of the rGO/QD system

    Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton-proton collisions at √s=13TeV

    Get PDF
    Production cross sections of the Higgs boson are measured in the H→ZZ→4ℓ (ℓ=e,μ) decay channel. A data sample of proton-proton collisions at a center-of-mass energy of 13TeV, collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137fb−1 is used. The signal strength modifier μμ, defined as the ratio of the Higgs boson production rate in the 4ℓ channel to the standard model (SM) expectation, is measured to be μ=0.94±0.07(stat)+0.09−0.08(syst) at a fixed value of mH=125.38GeV. The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the H→4ℓ process is measured to be 2.84+0.23−0.22(stat)+0.26−0.21(syst)fb, which is compatible with the SM prediction of 2.84±0.15fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions
    corecore