158 research outputs found

    DNA methylation profiles delineate epigenetic heterogeneity in seminoma and non-seminoma

    Get PDF
    Background: It remains important to understand the biology and identify biomarkers for less studied cancers like testicular cancer. The purpose of this study was to determine the methylation frequency of several cancer-related genes in different histological types of testicular cancer and normal testis tissues (NT). Methods: DNA was isolated from 43 seminomas (SEs), 14 non-SEs (NSEs) and 23 NT, and was assayed for promoter methylation status of 15 genes by quantitative methylation-specific PCR. The methylation status was evaluated for an association with cancer, and between SEs and NSEs. Results: We found differential methylation pattern in SEs and NSEs. MGMT, VGF, ER-Β and FKBP4 were predominately methylated in NSEs compared with SEs. APC and hMLH1 are shown to be significantly more methylated in both subtypes in comparison with NT. When combining APC, hMLH1, ER-Β and FKBP4, it is possible to identify 86% of the NSEs, whereas only 7% of the SEs. Conclusions: Our results indicate that the methylation profile of cancer-associated genes in testicular cancer correlates with histological types and show cancer-specific pattern for certain genes. Further methylation analysis, in a larger cohort is needed to elucidate their role in testicular cancer development and potential for therapy, early detection and disease monitoring

    The Ubiquitin Peptidase UCHL1 Induces G0/G1 Cell Cycle Arrest and Apoptosis Through Stabilizing p53 and Is Frequently Silenced in Breast Cancer

    Get PDF
    Background: Breast cancer (BrCa) is a complex disease driven by aberrant gene alterations and environmental factors. Recent studies reveal that abnormal epigenetic gene regulation also plays an important role in its pathogenesis. Ubiquitin carboxyl- terminal esterase L1 (UCHL1) is a tumor suppressor silenced by promoter methylation in multiple cancers, but its role and alterations in breast tumorigenesis remain unclear. Methodology/Principal Findings: We found that UCHL1 was frequently downregulated or silenced in breast cancer cell lines and tumor tissues, but readily expressed in normal breast tissues and mammary epithelial cells. Promoter methylation of UCHL1 was detected in 9 of 10 breast cancer cell lines (90%) and 53 of 66 (80%) primary tumors, but rarely in normal breast tissues, which was statistically correlated with advanced clinical stage and progesterone receptor status. Pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. Ectopic expression of UCHL1 significantly suppressed the colony formation and proliferation of breast tumor cells, through inducing G0/G1 cell cycle arrest and apoptosis. Subcellular localization study showed that UCHL1 increased cytoplasmic abundance of p53. We further found that UCHL1 induced p53 accumulation and reduced MDM2 protein level, and subsequently upregulated the expression of p21, as well as cleavage of caspase3 and PARP, but not in catalytic mutant UCHL1 C90Sexpressed cells
    corecore