12 research outputs found

    Protective effects of N-acetylcysteine on acetic acid-induced colitis in a porcine model

    Get PDF
    BACKGROUND: Ulcerative colitis is a chronic inflammatory disease and involves multiple etiological factors. Acetic acid (AA)-induced colitis is a reproducible and simple model, sharing many characteristics with human colitis. N-acetylcysteine (NAC) has been widely used as an antioxidant in vivo and in vitro. NAC can affect several signaling pathways involving in apoptosis, angiogenesis, cell growth and arrest, redox-regulated gene expression, and inflammatory response. Therefore, NAC may not only protect against the direct injurious effects of oxidants, but also beneficially alter inflammatory events in colitis. This study was conducted to investigate whether NAC could alleviate the AA-induced colitis in a porcine model. METHODS: Weaned piglets were used to investigate the effects of NAC on AA-induced colitis. Severity of colitis was evaluated by colon histomorphology measurements, histopathology scores, tissue myeloperoxidase activity, as well as concentrations of malondialdehyde and pro-inflammatory mediators in the plasma and colon. The protective role of NAC was assessed by measurements of antioxidant status, growth modulator, cell apoptosis, and tight junction proteins. Abundances of caspase-3 and claudin-1 proteins in colonic mucosae were determined by the Western blot method. Epidermal growth factor receptor, amphiregulin, tumor necrosis factor-alpha (TNF-α), and toll-like receptor 4 (TLR4) mRNA levels in colonic mucosae were quantified using the real-time fluorescent quantitative PCR. RESULTS: Compared with the control group, AA treatment increased (P < 0.05) the histopathology scores, intraepithelial lymphocyte (IEL) numbers and density in the colon, myeloperoxidase activity, the concentrations of malondialdehyde and pro-inflammatory mediators in the plasma and colon, while reducing (P < 0.05) goblet cell numbers and the protein/DNA ratio in the colonic mucosa. These adverse effects of AA were partially ameliorated (P < 0.05) by dietary supplementation with NAC. In addition, NAC prevented the AA-induced increase in caspase-3 protein, while stimulating claudin-1 protein expression in the colonic mucosa. Moreover, NAC enhanced mRNA levels for epidermal growth factor and amphiregulin in the colonic mucosa. CONCLUSION: Dietary supplementation with NAC can alleviate AA-induced colitis in a porcine model through regulating anti-oxidative responses, cell apoptosis, and EGF gene expression

    Macrophage migration inhibitory factor contributes to the development of acute dextran sulphate sodium-induced colitis in Toll-like receptor 4 knockout mice

    No full text
    Toll-like receptor 4 (TLR4), which recognizes lipopolysaccharides, plays an important role in the innate immune response. In this study, we investigated the role of TLR4 in the development of experimental colitis with regard to the biological actions of macrophage migration inhibitory factor (MIF) using TLR4 null ((−/−)) mice. TLR4(−/−) mice were given 2% dextran sulphate sodium (DSS) in drinking water to induce colitis, which was clinically and histologically as severe as that seen in wild-type (WT) mice. The level of tumour necrosis factor (TNF)-α in colon tissues was increased in WT mice but unchanged in TLR4(−/−) mice. The level of myeloperoxidase (MPO) activity in colon tissues was increased by DSS administration in both TLR4(−/−) and WT mice. The expression of MIF was up-regulated in the colons of TLR4(−/−) mice with acute DSS-induced colitis. An anti-MIF antibody significantly suppressed colitis and elevation of matrix metalloproteinase-13 in TLR4(−/−) mice. The current results obtained from TLR4(−/−) mice provide evidence that MIF plays a critical role in the development of acute DSS-induced colitis
    corecore