7,381 research outputs found

    Self-Interacting Electromagnetic Fields and a Classical Discussion on the Stability of the Electric Charge

    Full text link
    The present work proposes a discussion on the self-energy of charged particles in the framework of nonlinear electrodynamics. We seek magnet- ically stable solutions generated by purely electric charges whose electric and magnetic fields are computed as solutions to the Born-Infeld equa- tions. The approach yields rich internal structures that can be described in terms of the physical fields with explicit analytic solutions. This suggests that the anomalous field probably originates from a magnetic excitation in the vacuum due to the presence of the very intense electric field. In addition, the magnetic contribution has been found to exert a negative pressure on the charge. This, in turn, balances the electric repulsion, in such a way that the self-interaction of the field appears as a simple and natural classical mechanism that is able to account for the stability of the electron charge.Comment: 8 pages, 1 figur

    Thermodynamics of black holes in (n+1)(n+1)-dimensional Einstein-Born-Infeld dilaton gravity

    Full text link
    We construct a new class of (n+1)(n+1)-dimensional (n3)(n\geq3) black hole solutions in Einstein-Born-Infeld-dilaton gravity with Liouville-type potential for the dilaton field and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can represent black holes, with inner and outer event horizons, an extreme black hole or a naked singularity provided the parameters of the solutions are chosen suitably. We compute the thermodynamic quantities of the black hole solutions and find that these quantities satisfy the first law of thermodynamics. We also perform stability analysis and investigate the effect of dilaton on the stability of the solutions.Comment: 18 pages, 15 figure

    Spontaneous Generation of Photons in Transmission of Quantum Fields in PT Symmetric Optical Systems

    Full text link
    We develop a rigorous mathematically consistent description of PT symmetric optical systems by using second quantization. We demonstrate the possibility of significant spontaneous generation of photons in PT symmetric systems. Further we show the emergence of Hanbury-Brown Twiss (HBT) correlations in spontaneous generation. We show that the spontaneous generation determines decisively the nonclassical nature of fields in PT symmetric systems. Our work can be applied to other systems like plasmonic structure where losses are compensated by gain mechanisms.Comment: 4 pages, 5 figure

    Singularity-Free Electrodynamics for Point Charges and Dipoles: Classical Model for Electron Self-Energy and Spin

    Get PDF
    It is shown how point charges and point dipoles with finite self-energies can be accomodated into classical electrodynamics. The key idea is the introduction of constitutive relations for the electromagnetic vacuum, which actually mirrors the physical reality of vacuum polarization. Our results reduce to conventional electrodynamics for scales large compared to the classical electron radius r02.8×1013r_0\approx 2.8\times10^{-13} cm. A classical simulation for a structureless electron is proposed, with the appropriate values of mass, spin and magnetic moment.Comment: 3 page

    Dirac-Kronig-Penney model for strain-engineered graphene

    Full text link
    Motivated by recent proposals on strain-engineering of graphene electronic circuits we calculate conductivity, shot-noise and the density of states in periodically deformed graphene. We provide the solution to the Dirac-Kronig-Penney model, which describes the phase-coherent transport in clean monolayer samples with an one-dimensional modulation of the strain and the electrostatic potentials. We compare the exact results to a qualitative band-structure analysis. We find that periodic strains induce large pseudo-gaps and suppress charge transport in the direction of strain modulation. The strain-induced minima in the gate-voltage dependence of the conductivity characterize the quality of graphene superstructures. The effect is especially strong if the variation of inter-atomic distance exceeds the value a^2/l, where a is the lattice spacing of free graphene and l is the period of the superlattice. A similar effect induced by a periodic electrostatic potential is weakened due to Klein tunnelling.Comment: 11 pages, 8 figure

    Nonperturbative calculation of Born-Infeld effects on the Schroedinger spectrum of the hydrogen atom

    Full text link
    We present the first nonperturbative numerical calculations of the nonrelativistic hydrogen spectrum as predicted by first-quantized electrodynamics with nonlinear Maxwell-Born-Infeld field equations. We also show rigorous upper and lower bounds on the ground state. When judged against empirical data our results significantly restrict the range of viable values of the new electromagnetic constant which is introduced by the Born-Infeld theory. We assess Born's own proposal for the value of his constant.Comment: 4p., 2 figs, 1 table; submitted for publicatio

    Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity

    Full text link
    We report on room temperature laser action of an all monolithic ZnO-based vertical cavity surface emitting laser (VCSEL) under optical pumping. The VCSEL structure consists of a 2{\lambda} microcavity containing 8 ZnO/Zn(0.92)Mg(0.08)O quantum wells embedded in epitaxially grown Zn(0.92)Mg(0.08)O/Zn(0.65)Mg(0.35)O distributed Bragg reflectors (DBRs). As a prerequisite, design and growth of high reflectivity DBRs based on ZnO and (Zn,Mg)O for optical devices operating in the ultraviolet and blue-green spectral range are discussed.Comment: Copyright (2011) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Appl. Phys. Lett. 98, 011101 (2011) and may be found at http://apl.aip.org/resource/1/applab/v98/i1/p011101_s

    Biexcitons in two-dimensional systems with spatially separated electrons and holes

    Full text link
    The binding energy and wavefunctions of two-dimensional indirect biexcitons are studied analytically and numerically. It is proven that stable biexcitons exist only when the distance between electron and hole layers is smaller than a certain critical threshold. Numerical results for the biexciton binding energies are obtained using the stochastic variational method and compared with the analytical asymptotics. The threshold interlayer separation and its uncertainty are estimated. The results are compared with those obtained by other techniques, in particular, the diffusion Monte-Carlo method and the Born-Oppenheimer approximation.Comment: 11 pages, 7 figure

    Born-Infeld type Gravity

    Full text link
    Generalizations of gravitational Born-Infeld type lagrangians are investigated. Phenomenological constraints (reduction to Einstein-Hilbert action for small curvature, spin two ghost freedom and absence of Coulomb like Schwarschild singularity) select one effective lagrangian whose dynamics is dictated by the tensors g_{\mu\nu} and R_{\mu\nu\rho\sigma}(not R_{\mu\nu} or the scalar R).Comment: 7 pages, 3 figures, revte

    Dynamics of the Born-Infeld dyons

    Get PDF
    The approach to the dynamics of a charged particle in the Born-Infeld nonlinear electrodynamics developed in [Phys. Lett. A 240 (1998) 8] is generalized to include a Born-Infeld dyon. Both Hamiltonian and Lagrangian structures of many dyons interacting with nonlinear electromagnetism are constructed. All results are manifestly duality invariant.Comment: 11 pages, LATE
    corecore