12,482 research outputs found

    Multiple Residues in the Second Extracellular Loop Are Critical for M3 Muscarinic Acetylcholine Receptor Activation

    Get PDF
    Recent studies suggest that the second extracellular loop (o2 loop) of bovine rhodopsin and other class I G protein-coupled receptors (GPCRs) targeted by biogenic amine ligands folds deeply into the transmembrane receptor core where the binding of cis-retinal and biogenic amine ligands is known to occur. In the past, the potential role of the o2 loop in agonist-dependent activation of biogenic amine GPCRs has not been studied systematically. To address this issue, we used the M3 muscarinic acetylcholine receptor (M3R), a prototypic class I GPCR, as a model system. Specifically, we subjected the o2 loop of the M3R to random mutagenesis and subsequently applied a novel yeast genetic screen to identity single amino acid substitutions that interfered with M3R function. This screen led to the recovery of about 20 mutant M3Rs containing single amino acid changes in the o2 loop that were inactive in yeast. In contrast, application of the same strategy to the extracellular N-terminal domain of the M3R did not yield any single point mutations that disrupted M3R function. Pharmacological characterization of many of the recovered mutant M3Rs in mammalian cells, complemented by site-directed mutagenesis studies, indicated that the presence of several o2 loop residues is important for efficient agonist-induced M3R activation. Besides the highly conserved Cys220 residue, Gln207, Gly211, Arg213, Gly218, Ile222, Phe224, Leu225, and Pro228 were found to be of particular functional importance. In general, mutational modification of these residues had little effect on agonist binding affinities. Our findings are therefore consistent with a model in which multiple o2 loop residues are involved in stabilizing the active state of the M3R. Given the high degree of structural homology found among all biogenic amine GPCRs, our findings should be of considerable general relevance

    In Vitro Chemosensitivity Using the Histoculture Drug Response Assay in Human Epithelial Ovarian Cancer

    Get PDF
    The choice of chemotherapeutic drugs to treat patients with epithelial ovarian cancer has not depended on individual patient characteristics. We have investigated the correlation between in vitro chemosensitivity, as determined by the histoculture drug response assay (HDRA), and clinical responses in epithelial ovarian cancer. Fresh tissue samples were obtained from 79 patients with epithelial ovarian cancer. The sensitivity of these samples to 11 chemotherapeutic agents was tested using the HDRA method according to established methods, and we analyzed the results retrospectively. HDRA showed that they were more chemosensitive to carboplatin, topotecan and belotecan, with inhibition rates of 49.2%, 44.7%, and 39.7%, respectively, than to cisplatin, the traditional drug of choice in epithelial ovarian cancer. Among the 37 patients with FIGO stage Ⅲ/Ⅳ serous adenocarcinoma who were receiving carboplatin combined with paclitaxel, those with carboplatin-sensitive samples on HDRA had a significantly longer median disease-free interval than patients with carboplatin- resistant samples (23.2 vs. 13.8 months, p<0.05), but median overall survival did not differ significantly (60.4 vs. 37.3 months, p=0.621). In conclusion, this study indicates that HDRA could provide useful information for designing individual treatment strategies in patients with epithelial ovarian cancer

    A novel regulator of the p53-mediated mitochondrial apoptotic pathway

    Get PDF
    The p53 tumor suppressor protein induces apoptosis in response to genotoxic and environmental stress. Recent studies have revealed the existence of a transcription-independent mitochondrial p53 apoptosis pathway, however the mechanism regulating p53 translocation to mitochondria and subsequent initiation of apoptosis was not known. Here, we show that Tid1, also known as mtHsp40 or Dnaja3, interacts with p53 and directs its translocation to mitochondria in cells exposed to hypoxia. Overexpression of Tid1 in tumor cells promoted mitochondrial localization of both wildtype and mutant forms of p53 and was able to restore the pro-apoptotic activity of mutant p53 proteins that were otherwise unable to induce apoptosis. Tid1's mitochondrial signal sequence and DnaJ domain were both required for the movement of the p53-Tid1 complex from the cytosol to the mitochondria. Our findings establish Tid1 as a novel regulator of p53 localization and apoptotic function
    corecore