53 research outputs found

    Retrospective methods to estimate radiation dose at the site of breast cancer development after Hodgkin lymphoma radiotherapy.

    Get PDF
    Background:An increased risk of breast cancer following radiotherapy for Hodgkin lymphoma (HL) has now been robustly established. In order to estimate the dose-response relationship more accurately, and to aid clinical decision making, a retrospective estimation of the radiation dose delivered to the site of the subsequent breast cancer is required. Methods:For 174 Dutch and 170 UK female patients with breast cancer following HL treatment, the 3-dimensional position of the breast cancer in the affected breast was determined and transferred onto a CT-based anthropomorphic phantom. Using a radiotherapy treatment planning system the dose distribution on the CT-based phantom was calculated for the 46 different radiation treatment field set-ups used in the study population. The estimated dose at the centre of the breast cancer, and a margin to reflect dose uncertainty were determined on the basis of the location of the tumour and the isodose lines from the treatment planning. We assessed inter-observer variation and for 47 patients we compared the results with a previously applied dosimetry method. Results:The estimated median point dose at the centre of the breast cancer location was 29.75 Gy (IQR 5.8-37.2), or about 75% of the prescribed radiotherapy dose. The median dose uncertainty range was 5.97 Gy. We observed an excellent inter-observer variation (ICC 0.89 (95% CI: 0.74-0.95)). The absolute agreement intra-class correlation coefficient (ICC) for inter-method variation was 0.59 (95% CI: 0.37-0.75), indicating (nearly) good agreement. There were no systematic differences in the dose estimates between observers or methods. Conclusion:Estimates of the dose at the point of a subsequent breast cancer show good correlation between methods, but the retrospective nature of the estimates means that there is always some uncertainty to be accounted for

    Radiotherapy has a role in treating patients with Hodgkin's lymphoma in partial remission

    No full text

    Reply to D. Vordermark and T. Pelz and R. Mazzola et al.

    No full text

    Cardiovascular disease after cancer therapy

    Get PDF
    Improvements in treatment and earlier diagnosis have both contributed to increased survival for many cancer patients. Unfortunately, many treatments carry a risk of late effects including cardiovascular diseases (CVDs), possibly leading to significant morbidity and mortality. In this paper we describe current knowledge of the cardiotoxicity arising from cancer treatments, outline gaps in knowledge, and indicate directions for future research and guideline development, as discussed during the 2014 Cancer Survivorship Summit organised by the European Organisation for Research and Treatment of Cancer (EORTC). Better knowledge is needed of the late effects of modern systemic treatments and of radiotherapy to critical structures of the heart, including the effect of both radiation dose and volume of the heart exposed. Research elucidating the extent to which treatments interact in causing CVD, and the mechanisms involved, as well as the extent to which treatments may increase CVD indirectly by increasing cardiovascular risk factors is also important. Systematic collection of data relating treatment details to late effects is needed, and great care is needed to obtain valid and generalisable results. Better knowledge of these cardiac effects will contribute to both primary and secondary prevention of late complications where exposure to cardiotoxic treatment is unavoidable. Also surrogate markers would help to identify patients at increased risk of cardiotoxicity. Evidence-based screening guidelines for CVD following cancer are also needed. Finally, risk prediction models should be developed to guide primary treatment choice and appropriate follow up after cancer treatment. © 2014
    corecore