19 research outputs found
Ice XII in its second regime of metastability
We present neutron powder diffraction results which give unambiguous evidence
for the formation of the recently identified new crystalline ice phase[Lobban
et al.,Nature, 391, 268, (1998)], labeled ice XII, at completely different
conditions. Ice XII is produced here by compressing hexagonal ice I_h at T =
77, 100, 140 and 160 K up to 1.8 GPa. It can be maintained at ambient pressure
in the temperature range 1.5 < T < 135 K. High resolution diffraction is
carried out at T = 1.5 K and ambient pressure on ice XII and accurate
structural properties are obtained from Rietveld refinement. At T = 140 and 160
K additionally ice III/IX is formed. The increasing amount of ice III/IX with
increasing temperature gives an upper limit of T ~ 150 K for the successful
formation of ice XII with the presented procedure.Comment: 3 Pages of RevTeX, 3 tables, 3 figures (submitted to Physical Review
Letters
New developments of penalty methods for simulating turbulent flows interacting with obstacles
International audienc
Nanosecond dynamics of a gallium mirror's light-induced reflectivity change
Transient pump-probe optical reflectivity measurements of the nano- to microsecond dynamics of a fully reversible, light-induced, surface-assisted metallization of gallium interfaced with silica are reported. The metallization leads to a considerable increase in the interface's reflectivity when solid α-gallium is on the verge of melting. The reflectivity change was found to be a cumulative effect that grows with light intensity and pulse duration. The reflectivity relaxes back to that of α-gallium when the excitation is withdrawn in a time that increases critically at gallium's melting point. It is shown that thermal processes cannot account for the effect and so a mechanism based on a nonthermal light-induced structural phase transition is proposed