23,717 research outputs found
Decay of Spin-One Particle into Two Photons in Presence of Uniform External Magnetic Field
Yang's theorem states that an initial J=1 state cannot decay into two
photons. Because of this result some reactions relating to elementary particles
or atomic transitions can be ruled out. The theorem is not valid in the
presence of background electric or magnetic fields. In this work we show that
the decay of a J=1 particle into two photons is permitted by Bose symmetry and
rotational invariance when the background of the decay process is not pure
vacuum but contains an external classical magnetic/electric field. We also
discuss constraints on these amplitudes from {\bf CP} invariance.Comment: Tex fil
Contribution from unresolved discrete sources to the Extragalactic Gamma-Ray Background (EGRB)
The origin of the extragalactic gamma-ray background (EGRB) is still an open
question, even after nearly forty years of its discovery. The emission could
originate from either truly diffuse processes or from unresolved point sources.
Although the majority of the 271 point sources detected by EGRET (Energetic
Gamma Ray Experiment Telescope) are unidentified, of the identified sources,
blazars are the dominant candidates. Therefore, unresolved blazars may be
considered the main contributor to the EGRB, and many studies have been carried
out to understand their distribution, evolution and contribution to the EGRB.
Considering that gamma-ray emission comes mostly from jets of blazars and that
the jet emission decreases rapidly with increasing jet to line-of-sight angle,
it is not surprising that EGRET was not able to detect many large inclination
angle active galactic nuclei (AGNs). Though Fermi could only detect a few large
inclination angle AGNs in the first three months' survey, it is expected to
detect many such sources in the near future. Since non-blazar AGNs are expected
to have higher density as compared to blazars, these could also contribute
significantly to the EGRB. In this paper we discuss contributions from
unresolved discrete sources including normal galaxies, starburst galaxies,
blazars and off-axis AGNs to the EGRB.Comment: 11 pages, 4 figures, accepted for publication in RA
Improvement of PolSAR Decomposition Scattering Powers Using a Relative Decorrelation Measure
In this letter, a methodology is proposed to improve the scattering powers
obtained from model-based decomposition using Polarimetric Synthetic Aperture
Radar (PolSAR) data. The novelty of this approach lies in utilizing the
intrinsic information in the off-diagonal elements of the 33 coherency
matrix represented in the form of complex correlation
coefficients. Two complex correlation coefficients are computed between
co-polarization and cross-polarization components of the Pauli scattering
vector. The difference between modulus of complex correlation coefficients
corresponding to (i.e. the degree of polarization
(DOP) optimized coherency matrix), and (original) matrices is
obtained. Then a suitable scaling is performed using fractions \emph{i.e.,}
obtained
from the diagonal elements of the matrix.
Thereafter, these new quantities are used in modifying the Yamaguchi
4-component scattering powers obtained from . To
corroborate the fact that these quantities have physical relevance, a
quantitative analysis of these for the L-band AIRSAR San Francisco and the
L-band Kyoto images is illustrated. Finally, the scattering powers obtained
from the proposed methodology are compared with the corresponding powers
obtained from the Yamaguchi \emph{et. al.,} 4-component (Y4O) decomposition and
the Yamaguchi \emph{et. al.,} 4-component Rotated (Y4R) decomposition for the
same data sets. The proportion of negative power pixels is also computed. The
results show an improvement on all these attributes by using the proposed
methodology.Comment: Accepted for publication in Remote Sensing Letter
Forecasting Industry-Level CPI and PPI Inflation: Does Exchange Rate Pass-Through Matter?
In this paper, we examine whether industry-level forecasts of CPI and PPI inflation can be improved using the ``exchange rate pass-through" effect, that is, when one accounts for the variability of the exchange rate and import prices. An exchange rate depreciation leading to a higher level of pass-through to import prices implies greater expenditure switching, which should be manifested, possibly with a lag, in both producer and consumer prices. We build a forecasting model based on a two or three equation system involving CPI and PPI inflation where the effects of the exchange rate and import prices are taken into account. This setup also incorporates their dynamics, lagged correlations and appropriate restrictions suggested by the theory. We compare the performance of this model with a variety of unrestricted univariate and multivariate time series models, as well as with a model that, in addition, includes standard control variables for inflation, like interest rates and unemployment. Our results indicate that improvements on the forecast accuracy can be effected when one takes into account the possible pass-through effects of exchange rates and import prices on CPI and PPI inflation.Forecasting, Vector Autoregression, Non-linear Models, Inflation, Exchange Rates, Pass-Through Effect
- …