1,653 research outputs found
Efficient computation of hashes
The sequential computation of hashes at the core of many distributed storage systems and found, for example, in grid services can hinder efficiency in service quality and even pose security challenges that can only be addressed by the use of parallel hash tree modes. The main contributions of this paper are, first, the identification of several efficiency and security challenges posed by the use of sequential hash computation based on the Merkle-Damgard engine. In addition, alternatives for the parallel computation of hash trees are discussed, and a prototype for a new parallel implementation of the Keccak function, the SHA-3 winner, is introduced
Effect of quasi-bound states on coherent electron transport in twisted nanowires
Quantum transmission spectra of a twisted electron waveguide expose the
coupling between traveling and quasi-bound states. Through a direct numerical
solution of the open-boundary Schr\"odinger equation we single out the effects
of the twist and show how the presence of a localized state leads to a
Breit-Wigner or a Fano resonance in the transmission. We also find that the
energy of quasi-bound states is increased by the twist, in spite of the
constant section area along the waveguide. While the mixing of different
transmission channels is expected to reduce the conductance, the shift of
localized levels into the traveling-states energy range can reduce their
detrimental effects on coherent transport.Comment: 8 pages, 9 color figures, submitte
Momentum-Resolved View of Electron-Phonon Coupling in Multilayer WSe
We investigate the interactions of photoexcited carriers with lattice
vibrations in thin films of the layered transition metal dichalcogenide (TMDC)
WSe. Employing femtosecond electron diffraction with monocrystalline
samples and first principle density functional theory calculations, we obtain a
momentum-resolved picture of the energy-transfer from excited electrons to
phonons. The measured momentum-dependent phonon population dynamics are
compared to first principle calculations of the phonon linewidth and can be
rationalized in terms of electronic phase-space arguments. The relaxation of
excited states in the conduction band is dominated by intervalley scattering
between valleys and the emission of zone-boundary phonons.
Transiently, the momentum-dependent electron-phonon coupling leads to a
non-thermal phonon distribution, which, on longer timescales, relaxes to a
thermal distribution via electron-phonon and phonon-phonon collisions. Our
results constitute a basis for monitoring and predicting out of equilibrium
electrical and thermal transport properties for nanoscale applications of
TMDCs
Réflexion non spéculaire de faisceaux convergents par une interface solide-liquide
Le déplacement latéral et la distorsion d'un faisceau optique borné à la réflexion sur une interface liquide-solide ont
été étudiés antérieurement lorsque l'incidence est égale à l'angle de Rayleigh . Des résultats analogues à ceux de
l'optique dans le cas d'un faisceau acoustique : il y a déplacement angulaire quand le solide est dissipatif, et il y a
déplacement du foyer quand l'angle d'incidence diffère légèrement de l'angle critique, Nous présentons des expressions
analytiques de ces déplacements dans le cas où la largeur spectrale du faisceau est petite par rapport à la constante
d'atténuation a de l'onde de Rayleigh. Dans le cas de faisceaux plus larges, nous présentons des résultats numériques
qui mettent en évidence des déplacements relativement importants pour des champs réfléchis .The lateral shift and profile distortion of a bounded beam incident at the Rayleigh angle from a liquid onto a
solid has been studied in the past for parallel or divergent beams . In a manner analogous to results obtained in
optics, we show that an acoustic beam can also exhibit an angular shift when loss is present in the solid and a
shift in the focal point when the angle of incidence deviates slightly from the critical angle . The extent of these
shifts is given by analytical expressions for beams whose spectral width is small compared to the attenuation
constant a of the Rayleigh wave . For beams having broader spectral widths, we present numerical results for
the reflected fields which reveal the presence of relatively strong shifting effects
On demand entanglement in double quantum dots via coherent carrier scattering
We show how two qubits encoded in the orbital states of two quantum dots can
be entangled or disentangled in a controlled way through their interaction with
a weak electron current. The transmission/reflection spectrum of each scattered
electron, acting as an entanglement mediator between the dots, shows a
signature of the dot-dot entangled state. Strikingly, while few scattered
carriers produce decoherence of the whole two-dots system, a larger number of
electrons injected from one lead with proper energy is able to recover its
quantum coherence. Our numerical simulations are based on a real-space solution
of the three-particle Schroedinger equation with open boundaries. The computed
transmission amplitudes are inserted in the analytical expression of the system
density matrix in order to evaluate the entanglement.Comment: 20 pages, 5 figure
Entanglement of a microcanonical ensemble
We replace time-averaged entanglement by ensemble-averaged entanglement and
derive a simple expression for the latter. We show how to calculate the
ensemble average for a two-spin system and for the Jaynes-Cummings model. In
both cases the time-dependent entanglement is known as well so that one can
verify that the time average coincides with the ensemble average.Comment: 10 page
From Quantum Query Complexity to State Complexity
State complexity of quantum finite automata is one of the interesting topics
in studying the power of quantum finite automata. It is therefore of importance
to develop general methods how to show state succinctness results for quantum
finite automata. One such method is presented and demonstrated in this paper.
In particular, we show that state succinctness results can be derived out of
query complexity results.Comment: Some typos in references were fixed. To appear in Gruska Festschrift
(2014). Comments are welcome. arXiv admin note: substantial text overlap with
arXiv:1402.7254, arXiv:1309.773
Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals
Cu2-xTe nanocubes were used as starting seeds to access metal telluride
nanocrystals by cation exchanges at room temperature. The coordination number
of the entering cations was found to play an important role in dictating the
reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e.
with coordination number 4), such as Cd2+ or Hg2+, yielded monocrystalline CdTe
or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like
heterostructures as intermediates. The formation of Janus-like architectures
was attributed to the high diffusion rate of the relatively small tetrahedrally
coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and
nucleate the CdTe (or HgTe) phase in a preferred region of the host structure.
Also, with both Cd2+ and Hg2+ ions the exchange led to wurtzite CdTe and HgTe
phases rather than the more stable zinc-blende ones, indicating that the anion
framework of the starting Cu2- xTe particles could be more easily deformed to
match the anion framework of the metastable wurtzite structures. As hexagonal
HgTe had never been reported to date, this represents another case of
metastable new phases that can only be accessed by cation exchange. On the
other hand, the exchanges involving octahedrally coordinated ions (i.e. with
coordination number 6), such as Pb2+ or Sn2+, yielded rock-salt polycrystalline
PbTe or SnTe nanocrystals with Cu2-xTe@PbTe or Cu2-xTe@SnTe core@shell
architectures at the early stages of the exchange process. In this case, the
octahedrally coordinated ions are probably too large to diffuse easily through
the Cu2-xTe structure: their limited diffusion rate restricts their initial
reaction to the surface of the nanocrystals, where cation exchange is initiated
unselectively, leading to core@shell architectures.Comment: 11 pages, 7 figures in J. Am. Chem. Soc, 13 May 201
Processing Succinct Matrices and Vectors
We study the complexity of algorithmic problems for matrices that are
represented by multi-terminal decision diagrams (MTDD). These are a variant of
ordered decision diagrams, where the terminal nodes are labeled with arbitrary
elements of a semiring (instead of 0 and 1). A simple example shows that the
product of two MTDD-represented matrices cannot be represented by an MTDD of
polynomial size. To overcome this deficiency, we extended MTDDs to MTDD_+ by
allowing componentwise symbolic addition of variables (of the same dimension)
in rules. It is shown that accessing an entry, equality checking, matrix
multiplication, and other basic matrix operations can be solved in polynomial
time for MTDD_+-represented matrices. On the other hand, testing whether the
determinant of a MTDD-represented matrix vanishes PSPACE$-complete, and the
same problem is NP-complete for MTDD_+-represented diagonal matrices. Computing
a specific entry in a product of MTDD-represented matrices is #P-complete.Comment: An extended abstract of this paper will appear in the Proceedings of
CSR 201
Electronic structure and light-induced conductivity in a transparent refractory oxide
Combined first-principles and experimental investigations reveal the
underlying mechanism responsible for a drastic change of the conductivity (by
10 orders of magnitude) following hydrogen annealing and UV-irradiation in a
transparent oxide, 12CaO.7Al2O3, found by Hayashi et al. The charge transport
associated with photo-excitation of an electron from H, occurs by electron
hopping. We identify the atoms participating in the hops, determine the exact
paths for the carrier migration, estimate the temperature behavior of the
hopping transport and predict a way to enhance the conductivity by specific
doping.Comment: 4 pages including 4 figure
- …