36 research outputs found
Pneumococcal meningitis: Clinical-pathological correlations (meningene-path)
Pneumococcal meningitis is associated with substantial mortality and morbidity. We systematically assessed brain histopathology of 31 patients who died of pneumococcal meningitis from a nationwide study (median age 67 years; 21 (67 %) were male) using a pathology score including inflammation and vascular damage. Of the 27 patients with known time from the admission to death, 14 patients died within 7 days of admission and 13 after 7 days of admission. Eleven of 25 (44 %) patients had been treated with adjunctive dexamethasone therapy. Observed pathological processes were inflammation of medium-large arteries in 30 brains (97 %), cerebral haemorrhage in 24 (77 %), cerebritis in 24 (77 %), thrombosis in 21 (68 %), infarction in 19 (61 %) and ventriculitis in 19 (of 28 cases, 68 %). Inflammation of medium-large arteries led to obstruction of the vascular lumen in 14 (of 31 cases, 45 %). Vascular inflammation was associated with infarction and thrombosis of brain parenchymal vessels. Hippocampal dentate gyrus apoptosis between patients treated with and without dexamethasone was similar (p = 0.66); however, dexamethasone treated patients had higher total pathology score than non-dexamethasone treated patients (p = 0.003). Our study shows that vascular damage is key in the process of brain damage in pneumococcal meningitis. Data and material of this study will be made open-access for translational research in pneumococcal meningitis (MeninGene-Path)
Characterization of a pneumococcal meningitis mouse model
<p>Abstract</p> <p>Background</p> <p><it>S. pneumoniae </it>is the most common causative agent of meningitis, and is associated with high morbidity and mortality. We aimed to develop an integrated and representative pneumococcal meningitis mouse model resembling the human situation.</p> <p>Methods</p> <p>Adult mice (C57BL/6) were inoculated in the cisterna magna with increasing doses of <it>S. pneumoniae </it>serotype 3 colony forming units (CFU; n = 24, 10<sup>4</sup>, 10<sup>5</sup>, 10<sup>6 </sup>and 10<sup>7 </sup>CFU) and survival studies were performed. Cerebrospinal fluid (CSF), brain, blood, spleen, and lungs were collected. Subsequently, mice were inoculated with 10<sup>4 </sup>CFU <it>S. pneumoniae </it>serotype 3 and sacrificed at 6 (n = 6) and 30 hours (n = 6). Outcome parameters were bacterial outgrowth, clinical score, and cytokine and chemokine levels (using Luminex<sup>®</sup>) in CSF, blood and brain. Meningeal inflammation, neutrophil infiltration, parenchymal and subarachnoidal hemorrhages, microglial activation and hippocampal apoptosis were assessed in histopathological studies.</p> <p>Results</p> <p>Lower doses of bacteria delayed onset of illness and time of death (median survival CFU 10<sup>4</sup>, 56 hrs; 10<sup>5</sup>, 38 hrs, 10<sup>6</sup>, 28 hrs. 10<sup>7</sup>, 24 hrs). Bacterial titers in brain and CSF were similar in all mice at the end-stage of disease independent of inoculation dose, though bacterial outgrowth in the systemic compartment was less at lower inoculation doses. At 30 hours after inoculation with 10<sup>4 </sup>CFU of <it>S. pneumoniae</it>, blood levels of KC, IL6, MIP-2 and IFN- γ were elevated, as were brain homogenate levels of KC, MIP-2, IL-6, IL-1β and RANTES. Brain histology uniformly showed meningeal inflammation at 6 hours, and, neutrophil infiltration, microglial activation, and hippocampal apoptosis at 30 hours. Parenchymal and subarachnoidal and cortical hemorrhages were seen in 5 of 6 and 3 of 6 mice at 6 and 30 hours, respectively.</p> <p>Conclusion</p> <p>We have developed and validated a murine model of pneumococcal meningitis.</p
Leukocyte Attraction by CCL20 and Its Receptor CCR6 in Humans and Mice with Pneumococcal Meningitis
We previously identified CCL20 as an early chemokine in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis but its functional relevance was unknown. Here we studied the role of CCL20 and its receptor CCR6 in pneumococcal meningitis. In a prospective nationwide study, CCL20 levels were significantly elevated in the CSF of patients with pneumococcal meningitis and correlated with CSF leukocyte counts. CCR6 deficient mice with pneumococcal meningitis and WT mice with pneumococcal meningitis treated with anti-CCL20 antibodies both had reduced CSF white blood cell counts. The reduction in CSF pleocytosis was also accompanied by an increase in brain bacterial titers. Additional in vitro experiments showed direct chemoattractant activity of CCL20 for granulocytes. In summary, our results identify the CCL20-CCR6 axis as an essential component of the innate immune defense against pneumococcal meningitis, controlling granulocyte recruitment