9 research outputs found

    Acoustic Doppler flow-meters : A proposal to characterize their technical parameters

    No full text
    Acoustic Doppler flow-meters are commonly used for continuously measuring flow-rates in sewers. They rely on velocity sensors which provide data supposed to be representative, but not equal, to the mean velocity of the flow. The relationship between a measured value and the actual mean velocity of the flow depends on the volume sampled by the velocity sensor, and on the hydrodynamic features of the measuring site. This paper focuses on the first item, because parameters of sensors are often little detailed in manufacturers' specification sheets. The principles of testing procedures are outlined, and their implementation in an experimental benchmark is presented, along with the results obtained on a panel of flow-meters

    Les dispositifs hors norme de mesure du débit

    No full text
    Cet article prĂ©sente, Ă  travers trois exemples concrets de stations de mesure, trois mĂ©thodologies de dĂ©termination du dĂ©bit en fonction de mesures de hauteur d'eau et Ă©ventuellement de vitesse dans le cas oĂč aucune norme internationale n'est applicable. La premiĂšre mĂ©thode s'intĂ©resse Ă  l'instrumentation du dĂ©bit dĂ©versĂ© d'un dĂ©versoir d'eau excĂ©dentaire. Hydrauliquement similaires Ă  des seuils, les dĂ©versoirs ont nĂ©anmoins une gĂ©omĂ©trie souvent complexe et parfois mĂȘme unique. La mĂ©thodologie proposĂ©e repose sur une analyse hydraulique, l'utilisation de la mĂ©canique des fluides numĂ©rique 3D et un traitement des rĂ©sultats dans le but de crĂ©er une loi hauteur - dĂ©bit facilement exploitable. La deuxiĂšme mĂ©thode concerne le cas d'une station de jaugeage du dĂ©bit par cordes de vitesse dans un collecteur. La difficultĂ© de ce type de station vient du fait qu'elles sont gĂ©nĂ©ralement sous l'influence hydraulique de nombreuses singularitĂ©s rendant complexe le lien entre les vitesses mesurĂ©es et la vitesse moyenne. La mĂ©thodologie proposĂ©e dans ce cas est trĂšs proche de la prĂ©cĂ©dente, Ă  la diffĂ©rence prĂšs que le choix des modĂšles doit ĂȘtre adaptĂ© aux variables investiguĂ©es (distribution de la vitesse et plus seulement distribution de la hauteur d'eau). Enfin, la troisiĂšme mĂ©thode s'intĂ©resse Ă  la dĂ©termination du dĂ©bit transitant dans un collecteur au moyen de deux mesures de hauteur d'eau placĂ©es dans des regards distants. La mĂ©thodologie repose sur une analyse hydraulique, l'utilisation de l'Ă©quation de la courbe de remous (modĂšle 1D) et le traitement des rĂ©sultats dans l'objectif de les rendre facilement exploitables

    Les dispositifs hors norme de mesure du débit

    No full text
    Non-normalized gauging stations. This paper proposes three methodologies for the determination of discharge using water depth and velocity measurements when international standards are not applicable. Each methodology is illustrated through the use of a practical application. The first methodology deals with the instrumentation of the overflow discharge of a combined sewer overflow chamber. Even if these works are hydraulically very similar to standard weirs, their geometry is generally very complex and sometimes unique. The proposed methodology consists in a hydraulic analysis, the use of 3D computational fluid dynamics and the analysis of the simulated results in order to build simple head – discharge relationships that can be easily used by sewer managers. The second methodology deals with ultrasonic (transit-time) gauging stations where singularities have a significant influence on the link between the measured velocities and the mean velocity. The methodology for such stations is very similar to the previous one, with the exception that the models have to be chosen for simulating the velocity distribution and not only the water level distribution. Finally, the third method deals with the determination of the discharge in a sewer using two water level measurements located in two distant manholes. The methodology here consists in a hydraulic analysis, the use of the backwater curve equation (1D model) and an analysis of the simulated results to build an exploitable relationship.Cet article prĂ©sente, Ă  travers trois exemples concrets de stations de mesure, trois mĂ©thodologies de dĂ©termination du dĂ©bit en fonction de mesures de hauteur d’eau et Ă©ventuellement de vitesse dans le cas oĂč aucune norme internationale n’est applicable. La premiĂšre mĂ©thode s’intĂ©resse Ă  l’instrumentation du dĂ©bit dĂ©versĂ© d’un dĂ©versoir d’eau excĂ©dentaire. Hydrauliquement similaires Ă  des seuils, les dĂ©versoirs ont nĂ©anmoins une gĂ©omĂ©trie souvent complexe et parfois mĂȘme unique. La mĂ©thodologie proposĂ©e repose sur une analyse hydraulique, l’utilisation de la mĂ©canique des fluides numĂ©rique 3D et un traitement des rĂ©sultats dans le but de crĂ©er une loi hauteur – dĂ©bit facilement exploitable. La deuxiĂšme mĂ©thode concerne le cas d’une station de jaugeage du dĂ©bit par cordes de vitesse dans un collecteur. La difficultĂ© de ce type de station vient du fait qu’elles sont gĂ©nĂ©ralement sous l’influence hydraulique de nombreuses singularitĂ©s rendant complexe le lien entre les vitesses mesurĂ©es et la vitesse moyenne. La mĂ©thodologie proposĂ©e dans ce cas est trĂšs proche de la prĂ©cĂ©dente, Ă  la diffĂ©rence prĂšs que le choix des modĂšles doit ĂȘtre adaptĂ© aux variables investiguĂ©es (distribution de la vitesse et plus seulement distribution de la hauteur d’eau). Enfin, la troisiĂšme mĂ©thode s’intĂ©resse Ă  la dĂ©termination du dĂ©bit transitant dans un collecteur au moyen de deux mesures de hauteur d’eau placĂ©es dans des regards distants. La mĂ©thodologie repose sur une analyse hydraulique, l’utilisation de l’équation de la courbe de remous (modĂšle 1D) et le traitement des rĂ©sultats dans l’objectif de les rendre facilement exploitables.Dufresne Matthieu François Daniel, Vazquez JosĂ©, Bardiaux Jean-Bernard, Isel Sandra, Solliec Laurent. Les dispositifs hors norme de mesure du dĂ©bit. In: 35es journĂ©es de l’hydraulique de la SociĂ©tĂ© Hydrotechnique de France. HydromĂ©trie 2013. Paris, 15-16 mai 2013. 2013

    SMaRT-OnlineWDN D3.5 : Investigation pour le placement de capteurs de paramĂštres physico-chimiques

    No full text
    Drinking water distribution networks are exposed to malicious or accidental contamination. One level of responses consists of installing a sensor network to monitor the system in real time. Once a contamination has been detected, it is also important to take appropriate counter-measures. The SMaRT-OnlineWDN project relies on modelling to predict both hydraulics and water quality. An online model makes it possible to identify the contaminant source location and perform a simulation of the contaminated area. The sensor system is intended for detection by an early warning system. The sensor placement is described in the deliverable reports D3.1 and D3.2. The objective of this deliverable is to demonstrate the early-warning sensor placement optimisation method for the three end-users of the SMaRT-OnlineWDN project. For the CUS network (Strasbourg Eurométropole), a network graph is obtained after simplification that includes 16,000 links and 14,000 junction nodes. It is the basis of water quality multi-probe sensor for early-warning detection system. 5,000 uniformly distributed contamination events were generated by random sampling. Pareto optimal fronts were proposed to the water utility for average time to detection versus the sensor cost, and for detection likelihood versus the sensor cost. This makes possible the placement of additional 1 to 200 water quality multi-probe sensors. It was found that for 94 additional sensors there is no significant improvement for the detection likelihood, 95% of the generated contamination events were detected in less than 5 hours. BWB supplied the Hochstadt Ost part of the Berlin WDN to the Partners of the SMaRT- OnlineWDN project. Several nested WDN graphs were worked out from the more detailed one to the simplest with important crossroad nodes and head resource nodes. There was no information about number of connections, pipe accessibility, sensitive consumers and capacity to connect to the SCADA system; also the optimisations were only about minimization of average time to detection and likelihood of detection. The designs for 200 sensors were studied for the detailed model of Hochstadt Ost with 59,158 nodes and 63,828 links and for the supergraph with 9,557 nodes and 14,228 links. It takes several days to generate 50,000 contamination events for the detailed network and only few hours for the supergraph and 10,000 events. So the intention was to validate the calculation on the simplest network with contamination events and sensor placements located at important crossroad nodes (or path nodes). It was found that calculation on the simplest network, which makes focus on path nodes, gives similar results both in term of scores and sensor spatial distribution. Residence times in general are shorter on the supergraph because the forest where are the lowest velocities has been removed; also the average time to detection was slightly underestimated for consideration of contamination events in the forest. The SEDIF network was decomposed in 11 hydraulic models. Around 200 sensors are deployed on the whole SEDIF network: about 100 probes based on expert knowledge and the remaining 100 using the proposed methodology. In this work, VEDIF has used the greedy algorithm designed by Irstea in order to minimize the expected fraction of the exposed population to contaminations, but also the average time to detection, and to maximise the detection likelihood. Moreover, expert knowledge was used to limit sensor location site of interest for both goals, following the technical recommendations of the sensor supplier and speeding up the optimization by selecting only important crossroad nodes. With the deployment of about 200 sensors, the normalized criterion of unexposed population is from 75% to 90% for each of the eleven models. Finally, a GUI has been developed by Veolia Eau d'Ile de France to display the solutions of the sensor placement

    SMaRT-OnlineWDN: Online Security Management and Reliability Toolkit for Water Distribution Networks

    No full text
    International audienceLe principal objectif du projet SMaRT-OnlineWDN est de dĂ©velopper un systĂšme d’alerte prĂ©coce des contaminations et un logiciel d’aide Ă  la dĂ©cision pour la sĂ©curitĂ© des rĂ©seaux de distribution d’eau. Il y a quatre parties dans ce projet. La premiĂšre est de rechercher une disposition optimale de capteurs comme une combinaison de diffĂšrent types, par ex. : des capteurs mesurant l’état hydraulique, ou encore la qualitĂ© de l’eau, le tout avec un emplacement optimal de ces capteurs. Une autre est de dĂ©velopper un modĂšle de simulation en temps rĂ©el, lequel est automatiquement calĂ© sur les mesures des capteurs et, par lĂ , reproduit l’état hydraulique rĂ©el du rĂ©seau. La troisiĂšme partie est de dĂ©velopper un modĂšle de transport prenant mieux en compte les mĂ©canismes de transport et de mĂ©lange. Une fois qu’un Ă©vĂ©nement de contamination a Ă©tĂ© dĂ©tectĂ©, l’outil d’identification de sources remontera aux sources potentielles en utilisant un modĂšle de transport inverse. Pour prendre les contre-mesures appropriĂ©es, la propagation de contamination est d’abord dĂ©terminĂ©e Ă  l’instant prĂ©sent puis simulĂ©e sur un horizon court en utilisant un outil de prĂ©vision de la demande. Des expĂ©rimentations sont menĂ©es sur des sites tests pour valider les modĂšles, les mĂ©thodes et l’acquisition des donnĂ©es. La quatriĂšme partie du projet consiste en l’analyse des risques laquelle Ă©tudie la vraisemblance et les impacts d’une contamination dĂ©libĂ©rĂ©e, les actions Ă  prendre et comment informer les consommateurs. L’outil d’aide Ă  la dĂ©cision revient Ă  assembler ces diffĂ©rentes parties dans un tout cohĂ©rent. Il permet Ă  l’utilisateur final de simuler des scenarii et d’évaluer ses dĂ©cisions. Ce projet est un projet de recherche industriel CSOSG sĂ©lectionnĂ© par l’ANR et le BMBF pour une coopĂ©ration franco-allemande sur la sĂ©curitĂ© des rĂ©seaux. D’une durĂ©e de trois ans, il a commencĂ© en avril 2012. / The SMaRT-OnlineWDN projectÂŽs main objective is to develop an early warning system and a decision support toolkit for emergencies and the deliberate contamination of water distribution networks. There are four parts in this Project. One is to find an optimal sensor network as a combination of different sensor types e.g.: quality and hydraulic sensors and an optimal sensor placement. Another one is developing an online running model, which is automatically calibrated to the measured sensor data and simulates the current hydraulic status of the WDN. The third part is developing a model with more accurate transport and mixing mechanisms. Once a contamination event has been detected, the source identification tool will locate the contamination source by using the inverse transport model. Then, the spread of contamination is found out by simulating the future hydraulic status and using a forecast on water demand. For validating the models, the methods and the data acquisition, experiments are done at a real world test track. The fourth part of the project is a Risk analysis by studying the likelihood and impacts of deliberate contamination and how to behave in this case and also how to inform customers. The decision support toolkit is completed by combining all parts together. It allows the end user to simulate some scenarios and evaluate their decision. This French-German cooperative research project was selected by ANR and BMBF to start in April 2012 for 3 years under the call CSOSG 2011

    Projet COACHS - Rapport finalisé

    No full text
    Le projet avait pour principal objectif de contribuer au dĂ©ploiement de systĂšmes d'instrumentation intĂ©grĂ©e permettant une surveillance en continu et en temps rĂ©el des rejets des rĂ©seaux d'assainissement au milieu naturel. L'instrumentation intĂ©grĂ©e signifiait ici la prise en compte de la chaĂźne mĂ©trologique complĂšte, de la qualification d'un site de mesure et du choix d'une mĂ©thode au calcul d'incertitudes et Ă  la valorisation des donnĂ©es, du choix des capteurs Ă  leur implantation. La mise en synergie de recherches en mĂ©canique des fluides numĂ©rique et de travaux expĂ©rimentaux a permis de : proposer des mĂ©thodes de mesure du dĂ©bit dans un Ă©coulement canalisĂ© et de dĂ©termination du dĂ©bit dĂ©versĂ© au niveau des postes de refoulement ; dĂ©velopper une mĂ©thodologie d'Ă©valuation des dĂ©bits conserÎs et dĂ©versĂ©s au niveau des dĂ©versoirs d'orage ; montrer sur des exemples comment, pour un site donnĂ©, des recommandations peuvent ĂȘtre formulĂ©es pour la mise en place d'une instrumentation intĂ©grĂ©e au niveau des dĂ©versoirs d'orage ; prĂ©ciser l'influence d'une singularitĂ© (coude ou confluence) sur l'Ă©coulement en aval et ses rĂ©percussions sur le positionnement d'un dĂ©bitmĂštre Ă  l'aval d'une telle singularitĂ©
    corecore