458 research outputs found

    Kaon dispersion relation and flow in relativistic heavy-ion collisions

    Get PDF
    Within the framework of a relativistic transport model (ART) for heavy-ion collisions at AGS energies, we examine the effects of kaon dispersion relation on the transverse flow of kaons and their transverse momentum and azimuthal angle distributions. We find that the transverse flow is the most sensitive observable for studying the kaon dispersion relation in dense medium.Comment: 7 pages, latex, 3 figures available upon request from the authors, Phys. Rev. C (1996) in pres

    Pion flow and antiflow in relativistic heavy-ion collisions

    Get PDF
    Within the framework of a relativistic transport model (ART) for heavy-ion collisions at AGS energies, we study the transverse flow of pions with respect to that of nucleons using two complementary approaches. It is found that in central collisions pions develop a weak flow as a result of the flow of baryon resonances from which they are produced. On the other hand, they have a weak antiflow in peripheral collisions due to the shadowing of spectators. Furthermore, it is shown that both pion flow and antiflow are dominated by those with large transverse momenta.Comment: Phys. Rev. C, Rapid communication, in press. Figures are available from the authors upon reques

    Medium effects on charged pion ratio in heavy ion collisions

    Full text link
    We have recently studied in the delta-resonance--nucleon-hole model the dependence of the pion spectral function in hot dense asymmetric nuclear matter on the charge of the pion due to the pion p-wave interaction in nuclear medium. In a thermal model, this isospin-dependent effect enhances the ratio of negatively charged to positively charged pions in neutron-rich nuclear matter, and the effect is comparable to that due to the uncertainties in the theoretically predicted stiffness of nuclear symmetry energy at high densities. This effect is, however, reversed if we also take into account the s-wave interaction of the pion in nuclear medium as given by chiral perturbation theory, resulting instead in a slightly reduced ratio of negatively charged to positively charged pions. Relevance of our results to the determination of the nuclear symmetry energy from the ratio of negatively to positively charged pions produced in heavy ion collisions is discussed.Comment: 11 pages, 4 figures, contribution to The International Workshop on Nuclear Dynamics in Heavy-Ion Reactions and the Symmetry Energy (IWND2009), Shanghai, China, 22-25 August, 200

    Constraining the Skyrme effective interactions and the neutron skin thickness of nuclei using isospin diffusion data from heavy ion collisions

    Get PDF
    Recent analysis of the isospin diffusion data from heavy-ion collisions based on an isospin- and momentum-dependent transport model with in-medium nucleon-nucleon cross sections has led to the extraction of a value of L=88±25L=88\pm 25 MeV for the slope of the nuclear symmetry energy at saturation density. This imposes stringent constraints on both the parameters in the Skyrme effective interactions and the neutron skin thickness of heavy nuclei. Among the 21 sets of Skyrme interactions commonly used in nuclear structure studies, the 4 sets SIV, SV, Gσ_\sigma, and Rσ_\sigma are found to give LL values that are consistent with the extracted one. Further study on the correlations between the thickness of the neutron skin in finite nuclei and the nuclear matter symmetry energy in the Skyrme Hartree-Fock approach leads to predicted thickness of the neutron skin of 0.22±0.040.22\pm 0.04 fm for 208^{208}Pb, 0.29±0.040.29\pm 0.04 fm for 132^{132}Sn, and 0.22±0.040.22\pm 0.04 fm for 124^{124}Sn.Comment: 10 pages, 4 figures, 1 Table, Talk given at 1) International Conference on Nuclear Structure Physics, Shanghai, 12-17 June, 2006; 2) 11th China National Nuclear Structure Physics Conference, Changchun, Jilin, 13-18 July, 200

    Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei

    Get PDF
    Expressing explicitly the parameters of the standard Skyrme interaction in terms of the macroscopic properties of asymmetric nuclear matter, we show in the Skyrme-Hartree-Fock approach that unambiguous correlations exist between observables of finite nuclei and nuclear matter properties. We find that existing data on neutron skin thickness Δrnp\Delta r_{np} of Sn isotopes give an important constraint on the symmetry energy Esym(ρ0)E_{sym}({\rho _{0}}) and its density slope LL at saturation density ρ0{\rho _{0}}. Combining these constraints with those from recent analyses of isospin diffusion and double neutron/proton ratio in heavy-ion collisions at intermediate energies leads to a more stringent limit on LL approximately independent of Esym(ρ0)E_{sym}({\rho _{0}}). The implication of these new constraints on the Δrnp\Delta r_{np} of 208^{208}Pb as well as the core-crust transition density and pressure in neutron stars is discussed.Comment: 18 pages, 9 figures, 1 table. Significantly expanded to include a number of details and discussions. Title shortened. Accepted version to appear in PR

    Transition density and pressure in hot neutron stars

    Get PDF
    Using the momentum-dependent MDI effective interaction for nucleons, we have studied the transition density and pressure at the boundary between the inner crust and liquid core of hot neutron stars. We find that their values are larger in neutrino-trapped neutron stars than in neutrino-free neutron stars. Furthermore, both are found to decrease with increasing temperature of a neutron star as well as increasing slope parameter of the nuclear symmetry energy, except that the transition pressure in neutrino-trapped neutron stars for the case of small symmetry energy slope parameter first increases and then decreases with increasing temperature. We have also studied the effect of the nuclear symmetry energy on the critical temperature above which the inner crust in a hot neutron star disappears and found that with increasing value of the symmetry energy slope parameter, the critical temperature decreases slightly in neutrino-trapped neutron stars but first decreases and then increases in neutrino-free neutron stars.Comment: 7 pages, 6 figures, version to appear in Phys. Rev.

    Higher-order effects on the incompressibility of isospin asymmetric nuclear matter

    Get PDF
    Analytical expressions for the saturation density as well as the binding energy and incompressibility at the saturation density of asymmetric nuclear matter are given exactly up to 4th-order in the isospin asymmetry delta =(rho_n - rho_p)/rho using 11 characteristic parameters defined at the normal nuclear density rho_0. Using an isospin- and momentum-dependent modified Gogny (MDI) interaction and the SHF approach with 63 popular Skyrme interactions, we have systematically studied the isospin dependence of the saturation properties of asymmetric nuclear matter, particularly the incompressibility Ksat(δ)=K0+Ksat,2δ2+Ksat,4δ4+O(δ6)K_{sat}(\delta )=K_{0}+K_{sat,2}\delta ^{2}+K_{sat,4}\delta ^{4}+O(\delta ^{6}) at the saturation density. Our results show that the magnitude of the high-order Ksat,4K_{sat,4} parameter is generally small compared to that of the K_{\sat,2} parameter. The latter essentially characterizes the isospin dependence of the incompressibility at the saturation density and can be expressed as Ksat,2=Ksym6LJ0K0LK_{sat,2}=K_{sym}-6L-\frac{J_{0}}{K_{0}}L, Furthermore, we have constructed a phenomenological modified Skyrme-like (MSL) model which can reasonably describe the general properties of symmetric nuclear matter and the symmetry energy predicted by both the MDI model and the SHF approach. The results indicate that the high-order J0J_{0} contribution to Ksat,2K_{sat,2} generally cannot be neglected. In addition, it is found that there exists a nicely linear correlation between KsymK_{sym} and LL as well as between J0/K0J_{0}/K_{0} and K0K_{0}. These correlations together with the empirical constraints on K0K_{0}, LL, Esym(ρ0)E_{sym}(\rho_{0}) and the nucleon effective mass lead to an estimate of Ksat,2=370±120K_{sat,2}=-370\pm 120 MeV.Comment: 61 pages, 12 figures, 6 Tables. Title changed a little and results of several Skyrme interactions updated. Accepted version to appear in PR
    corecore