115 research outputs found
Q-stars and charged q-stars
We present the formalism of q-stars with local or global U(1) symmetry. The
equations we formulate are solved numerically and provide the main features of
the soliton star. We study its behavior when the symmetry is local in contrast
to the global case. A general result is that the soliton remains stable and
does not decay into free particles and the electrostatic repulsion preserves it
from gravitational collapse. We also investigate the case of a q-star with
non-minimal energy-momentum tensor and find that the soliton is stable even in
some cases of collapse when the coupling to gravity is absent.Comment: Latex, 19pg, 12 figures. Accepted in Phys. Rev.
Q-stars in extra dimensions
We study q-stars with global and local U(1) symmetry in extra dimensions in
asymptotically anti de Sitter or flat spacetime. The behavior of the mass,
radius and particle number of the star is quite different in 3 dimensions, but
in 5, 6, 8 and 11 dimensions is similar to the behavior in 4.Comment: 18 pages, to appear in Phys. Rev.
EYM equations in the presence of q-stars
We study Einstein-Yang-Mills equations in the presence of gravitating
non-topological soliton field configurations, of q-ball type. We produce
numerical solutions, stable with respect to gravitational collapse and to
fission into free particles, and we study the effect of the field strength and
the eigen-frequency to the soliton parameters. We also investigate the
formation of such soliton stars when the spacetime is asymptotically anti de
Sitter.Comment: 11 pages, to appear in Phys. Rev.
Sudakov Electroweak effects in transversely polarized beams
We study Standard Model electroweak radiative corrections for fully inclusive
observables with polarized fermionic beams. Our calculations are relevant in
view of the possibility for Next Generation Linear colliders of having
transversely and/or longitudinally polarized beams. The case of initial
transverse polarization is particularly interesting because of the interplay of
infrared/collinear logarithms of different origins, related both to the
nonabelian SU(2) and abelian U(1) sectors. The Standard model effects turn out
to be in the 10% range at the TeV scale, therefore particularly relevant in
order to disentangle possible New Physics effects.Comment: 5 pages,4 figure
Parity nonconservation in heavy atoms: The radiative correction enhanced by the strong electric field of the nucleus
Parity nonconservation due to the nuclear weak charge is considered. We
demonstrate that the radiative corrections to this effect due to the vacuum
fluctuations of the characteristic size larger than the nuclear radius
and smaller than the electron Compton wave-length are enhanced
because of the strong electric field of the nucleus. The parameter that allows
one to classify the corrections is the large logarithm .
The vacuum polarization contribution is enhanced by the second power of the
logarithm. Although the self-energy and the vertex corrections do not vanish,
they contain only the first power of the logarithm. The value of the radiative
correction is 0.4% for Cs and 0.9% for Tl, Pb, and Bi. We discuss also how the
correction affects the interpretation of the experimental data on parity
nonconservation in atoms.Comment: 4 pages, 3 figures, RevTe
Two-Loop Corrections to the Fermionic Decay Rates of the Standard-Model Higgs Boson
Low- and intermediate mass Higgs bosons decay preferably into fermion pairs.
The one-loop electroweak corrections to the respective decay rates are
dominated by a flavour-independent term of . We calculate
the two-loop gluon correction to this term. It turns out that this correction
screens the leading high- behaviour of the one-loop result by roughly
10\%. We also present the two-loop QCD correction to the contribution induced
by a pair of fourth-generation quarks with arbitrary masses. As expected, the
inclusion of the QCD correction considerably reduces the renormalization-scheme
dependence of the prediction.Comment: 14 pages, latex, figures 2-5 appended, DESY 94-08
The Muonium Atom as a Probe of Physics beyond the Standard Model
The observed interactions between particles are not fully explained in the
successful theoretical description of the standard model to date. Due to the
close confinement of the bound state muonium () can be used as
an ideal probe of quantum electrodynamics and weak interaction and also for a
search for additional interactions between leptons. Of special interest is the
lepton number violating process of sponteanous conversion of muonium to
antimuonium.Comment: 15 pages,6 figure
Novel Approach to Confront Electroweak Data and Theory
A novel approach to study electroweak physics at one-loop level in generic
theories is introduced. It separates the 1-loop
corrections into two pieces: process specific ones from vertex and box
contributions, and universal ones from contributions to the gauge boson
propagators. The latter are parametrized in terms of four effective form
factors , , and corresponding to the , , and
propagators. Under the assumption that only the Standard Model contributes to
the process specific corrections, the magnitudes of the four form factors are
determined at and at q^2=\mmz by fitting to all available precision
experiments. These values are then compared systematically with predictions of
theories. In all fits \alpha_s(\mz) and
\bar{\alpha}(\mmz) are treated as external parameters in order to keep the
interpretation as flexible as possible. The treatment of the electroweak data
is presented in detail together with the relevant theoretical formulae used to
interpret the data. No deviation from the Standard Model has been identified.
Ranges of the top quark and Higgs boson masses are derived as functions of
\alpha_s(\mz) and \bar{\alpha}(\mmz). Also discussed are consequences of
the recent precision measurement of the left-right asymmetry at SLC as well as
the impact of a top quark mass and an improved mass measurement.Comment: 123 pages, LaTeX (33 figures available via anonymous ftp),
KEK-TH-375, KEK preprint 93-159, KANAZAWA-94-19, DESY 94-002, YUMS 94-22,
SNUTP 94-82, to be published in Z.Phys.
Nuclear Ground State Observables and QCD Scaling in a Refined Relativistic Point Coupling Model
We present results obtained in the calculation of nuclear ground state
properties in relativistic Hartree approximation using a Lagrangian whose
QCD-scaled coupling constants are all natural (dimensionless and of order 1).
Our model consists of four-, six-, and eight-fermion point couplings (contact
interactions) together with derivative terms representing, respectively, two-,
three-, and four-body forces and the finite ranges of the corresponding mesonic
interactions. The coupling constants have been determined in a self-consistent
procedure that solves the model equations for representative nuclei
simultaneously in a generalized nonlinear least-squares adjustment algorithm.
The extracted coupling constants allow us to predict ground state properties of
a much larger set of even-even nuclei to good accuracy. The fact that the
extracted coupling constants are all natural leads to the conclusion that QCD
scaling and chiral symmetry apply to finite nuclei.Comment: 44 pages, 13 figures, 9 tables, REVTEX, accepted for publication in
Phys. Rev.
Particle Motion Around Tachyon Monopole
Recently, Li and Liu have studied global monoole of tachyon in a four
dimensional static space-time. We analyze the motion of massless and massive
particles around tachyon monopole. Interestingly, for the bending of light rays
due to tachyon monopole instead of getting angle of deficit we find angle of
surplus. Also we find that the tachyon monopole exerts an attractive
gravitational force towards matter.Comment: 14 pages, 7 figure
- …