99 research outputs found

    Energy levels and lifetimes of Gd IV and enhancement of the electron dipole moment

    Full text link
    We have calculated energy levels and lifetimes of 4f7 and 4f6 5d configurations of Gd IV using Hartree-Fock and configuration interaction methods. This allows us to reduce significantly the uncertainty of the theoretical determination of the electron electric dipole moment (EDM) enhancement factor in this ion and, correspondingly, in gadolinium-containing garnets for which such measurements were recently proposed. Our new value for the EDM enhancement factor of Gd+3 is -2.2 +- 0.5. Calculations of energy levels and lifetimes for Eu~III are used to control the accuracy.Comment: Submitted to Phys. Rev. A 6 pages, 0 figures, 3 table

    Searches for violation of fundamental time reversal and space reflection symmetries in solid state experiments

    Full text link
    The electric dipole moment (EDM) of a particle violates both time reversal (T) and space reflection (P) symmetries. There have been recent suggestions for searches of the electron EDM using solid state experiments [1,2]. These experiments could improve the sensitivity compared to present atomic and molecular experiments by several orders of magnitude. In the present paper we calculate the expected effect. We also suggest that this kind of experiment is sensitive to T,P-violation in nuclear forces and calculate effects caused by the nuclear Schiff moment. The compounds under consideration contain magnetic Gd3+^{3+} ions and oxygen O2^{2-} ions. We demonstrate that the main mechanism for the T,P-odd effects is related to the penetration of the Oxygen 2p-electrons to the Gd core. All the effects are related to the deformation of the crystal lattice.Comment: 13 pages, 6 figure

    Probing CP Violation with the Deuteron Electric Dipole Moment

    Full text link
    We present an analysis of the electric dipole moment (EDM) of the deuteron as induced by CP-violating operators of dimension 4, 5 and 6 including theta QCD, the EDMs and color EDMs of quarks, four-quark interactions and the Weinberg operator. We demonstrate that the precision goal of the EDM Collaboration's proposal to search for the deuteron EDM, (1-3)\times 10^{-27} e cm, will provide an improvement in sensitivity to these sources of one-two orders of magnitude relative to the existing bounds. We consider in detail the level to which CP-odd phases can be probed within the MSSM.Comment: 5 pages, 4 figures; precision estimates clarified, to appear in Phys. Rev.

    Flavour and Collider Interplay for SUSY at LHC7

    Get PDF
    The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb1^{-1} run, we explore the flavour constraints on three models with a CMSSM-like spectrum: the CMSSM itself, a Seesaw extension of the CMSSM, and Flavoured CMSSM. In particular, we focus on decays that might have been measured by the time the run is concluded, such as BsμμB_s\to\mu\mu and μeγ\mu\to e\gamma. We also analyse constraints imposed by neutral meson bounds and electric dipole moments. The interplay between collider and flavour experiments is explored through the use of three benchmark scenarios, finding the flavour feedback useful in order to determine the model parameters and to test the consistency of the different models.Comment: 44 pages, 15 figures; v3: minor corrections, added references, updated figures. Version accepted for publicatio

    Democratic (S)fermions and Lepton Flavor Violation

    Full text link
    The democratic approach to account for fermion masses and mixing is known to be successful not only in the quark sector but also in the lepton sector. Here we extend this ansatz to supersymmetric standard models, in which the K\"ahler potential obeys underlying S_3 flavor symmetries. The requirement of neutrino bi-large mixing angles constrains the form of the K\"ahler potential for left-handed lepton multiplets. We find that right-handed sleptons can have non-degenerate masses and flavor mixing, while left-handed sleptons are argued to have universal and hence flavor-blind masses. This mass pattern is testable in future collider experiments when superparticle masses will be measured precisely. Lepton flavor violation arises in this scenario. In particular, \mu \to e \gamma is expected to be observed in a planning future experiment if supersymmetry breaking scale is close to the weak scale.Comment: 22 pages, 2 figure

    Mixing-induced CP violating sources for electroweak baryogenesis from a semiclassical approach

    Full text link
    The effects of flavor mixing in electroweak baryogenesis is investigated in a generalized semiclassical WKB approach. Through calculating the nonadiabatic corrections to the particle currents it is shown that extra CP violation sources arise from the off-diagonal part of the equation of motion of particles moving inside the bubble wall. This type of mixing-induced source is of the first order in derivative expansion of the Higgs condensate, but is oscillation suppressed. The numerical importance of the mixing-induced source is discussed in the Minimal Supersymmetric Standard Model and compared with the source term induced by semiclassical force. It is found that in a large parameter space where oscillation suppression is not strong enough, the mixing-induced source can dominate over that from the semiclassical force.Comment: 19 pp, 2 figs, 1 table, some comments added, to appear in Eur.Phys.J.

    Enhancement of the electron electric dipole moment in gadolinium garnets

    Full text link
    Effects caused by the electron electric dipole moment (EDM) in gadolinium garnets are considered. Experimental studies of these effects could improve current upper limit on the electron EDM by several orders of magnitude. We suggest a consistent theoretical model and perform calculations of observable effects in gadolinium gallium garnet and gadolinium iron garnet. Our calculation accounts for both direct and exchange diagrams.Comment: 9 page

    A New Parametrization of the Seesaw Mechanism and Applications in Supersymmetric Models

    Full text link
    We present a new parametrization of the minimal seesaw model, expressing the heavy-singlet neutrino Dirac Yukawa couplings (Yν)ij(Y_\nu)_{ij} and Majorana masses MNiM_{N_i} in terms of effective light-neutrino observables and an auxiliary Hermitian matrix H.H. In the minimal supersymmetric version of the seesaw model, the latter can be related directly to other low-energy observables, including processes that violate charged lepton flavour and CP. This parametrization enables one to respect the stringent constraints on muon-number violation while studying the possible ranges for other observables by scanning over the allowed parameter space of the model. Conversely, if any of the lepton-flavour-violating process is observed, this measurement can be used directly to constrain (Yν)ij(Y_\nu)_{ij} and MNi.M_{N_i}. As applications, we study flavour-violating τ\tau decays and the electric dipole moments of leptons in the minimal supersymmetric seesaw model.Comment: Important references adde

    Hadronic EDMs, the Weinberg Operator, and Light Gluinos

    Full text link
    We re-examine questions concerning the contribution of the three-gluon Weinberg operator to the electric dipole moment of the neutron, and provide several QCD sum rule-based arguments that the result is smaller than - but nevertheless consistent with - estimates which invoke naive dimensional analysis. We also point out a regime of the MSSM parameter space with light gluinos for which this operator provides the dominant contribution to the neutron electric dipole moment due to enhancement via the dimension five color electric dipole moment of the gluino.Comment: 6 pages, RevTeX, 3 figures; v2: references added; v3: typos corrected, to appear in Phys. Rev.
    corecore