25,082 research outputs found

    Dynamic model for failures in biological systems

    Full text link
    A dynamic model for failures in biological organisms is proposed and studied both analytically and numerically. Each cell in the organism becomes dead under sufficiently strong stress, and is then allowed to be healed with some probability. It is found that unlike the case of no healing, the organism in general does not completely break down even in the presence of noise. Revealed is the characteristic time evolution that the system tends to resist the stress longer than the system without healing, followed by sudden breakdown with some fraction of cells surviving. When the noise is weak, the critical stress beyond which the system breaks down increases rapidly as the healing parameter is raised from zero, indicative of the importance of healing in biological systems.Comment: To appear in Europhys. Let

    Macromolecular separation through a porous surface

    Full text link
    A new technique for the separation of macromolecules is proposed and investigated. A thin mesh with pores comparable to the radius of gyration of a free chain is used to filter chains according to their length. Without a field it has previously been shown that the permeability decays as a power law with chain length. However by applying particular configurations of pulsed fields, it is possible to have a permeability that decays as an exponential. This faster decay gives much higher resolution of separation. We also propose a modified screen containing an array of holes with barb-like protrusions running parallel to the surface. When static friction is present between the macromolecule and the protrusion, some of the chains get trapped for long durations of time. By using this and a periodic modulation of an applied electric field, high resolution can be attained.Comment: 18 pages latex, 6 postscript figures, using psfi

    (2,2)-Formalism of General Relativity: An Exact Solution

    Get PDF
    I discuss the (2,2)-formalism of general relativity based on the (2,2)-fibration of a generic 4-dimensional spacetime of the Lorentzian signature. In this formalism general relativity is describable as a Yang-Mills gauge theory defined on the (1+1)-dimensional base manifold, whose local gauge symmetry is the group of the diffeomorphisms of the 2-dimensional fibre manifold. After presenting the Einstein's field equations in this formalism, I solve them for spherically symmetric case to obtain the Schwarzschild solution. Then I discuss possible applications of this formalism.Comment: 2 figures included, IOP style file neede

    The role of binaries in the enrichment of the early Galactic halo. I. r-process-enhanced metal-poor stars

    Full text link
    The detailed chemical composition of most metal-poor halo stars has been found to be highly uniform, but a minority of stars exhibit dramatic enhancements in their abundances of heavy neutron-capture elements and/or of carbon. The key question for Galactic chemical evolution models is whether these peculiarities reflect the composition of the natal clouds, or if they are due to later mass transfer of processed material from a binary companion. If the former case applies, the observed excess of certain elements was implanted within selected clouds in the early ISM from a production site at interstellar distances. Our aim is to determine the frequency and orbital properties of binaries among these chemically peculiar stars. This information provides the basis for deciding whether mass transfer from a binary companion is necessary and sufficient to explain their unusual compositions. This paper discusses our study of a sample of 17 moderately (r-I) and highly (r-II) r-process-element enhanced VMP and EMP stars. High-resolution, low signal-to-noise spectra of the stars were obtained at roughly monthly intervals over 8 years with the FIES spectrograph at the Nordic Optical Telescope. From these spectra, radial velocities with an accuracy of ~100 m/s were determined by cross-correlation against an optimized template. 14 of the programme stars exhibit no significant RV variation over this period, while 3 are binaries with orbits of typical eccentricity for their periods, resulting in a normal binary frequency of ~18+-6% for the sample. Our results confirm our preliminary conclusion from 2011, based on partial data, that the chemical peculiarity of the r-I and r-II stars is not caused by any putative binary companions. Instead, it was imprinted on the natal molecular clouds of these stars by an external, distant source. Models of the ISM in early galaxies should account for such mechanisms.Comment: 14 pages, 3 figures, accepted for publication in Astronomy and Astrophysic

    MACS: Multi-agent COTR system for Defense Contracting

    Get PDF
    The field of intelligent multi-agent systems has expanded rapidly in the recent past. Multi-agent architectures and systems are being investigated and continue to develop. To date, little has been accomplished in applying multi-agent systems to the defense acquisition domain. This paper describes the design, development, and related considerations of a multi-agent system in the area of procurement and contracting for the defense acquisition community

    The role of binaries in the enrichment of the early Galactic halo. II. Carbon-Enhanced Metal-Poor Stars - CEMP-no stars

    Full text link
    The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon - the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds, or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Most programme stars exhibit no statistically significant radial-velocit variation over this period and appear to be single, while four are found to be binaries with orbital periods of 300-2,000 days and normal eccentricity; the binary frequency for the sample is 17+-9%. The single stars mostly belong to the recently-identified ``low-C band'', while the binaries have higher absolute carbon abundances. We conclude that the nucleosynthetic process responsible for the strong carbon excess in these ancient stars is unrelated to their binary status; the carbon was imprinted on their natal molecular clouds in the early Galactic ISM by an even earlier, external source, strongly indicating that the CEMP-no stars are likely bona fide second-generation stars. We discuss potential production sites for carbon and its transfer across interstellar distances in the early ISM, and implications for the composition of high-redshift DLA systems. Abridged.Comment: 16 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Electronic structures of Zn1x_{1-x}Cox_xO using photoemission and x-ray absorption spectroscopy

    Full text link
    Electronic structures of Zn1x_{1-x}Cox_xO have been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Co 3d states are found to lie near the top of the O 2p2p valence band, with a peak around 3\sim 3 eV binding energy. The Co 2p2p XAS spectrum provides evidence that the Co ions in Zn1x_{1-x}Cox_{x}O are in the divalent Co2+^{2+} (d7d^7) states under the tetrahedral symmetry. Our finding indicates that the properly substituted Co ions for Zn sites will not produce the diluted ferromagnetic semiconductor property.Comment: 3 pages, 2 figure

    New Hamiltonian formalism and quasi-local conservation equations of general relativity

    Full text link
    I describe the Einstein's gravitation of 3+1 dimensional spacetimes using the (2,2) formalism without assuming isometries. In this formalism, quasi-local energy, linear momentum, and angular momentum are identified from the four Einstein's equations of the divergence-type, and are expressed geometrically in terms of the area of a two-surface and a pair of null vector fields on that surface. The associated quasi-local balance equations are spelled out, and the corresponding fluxes are found to assume the canonical form of energy-momentum flux as in standard field theories. The remaining non-divergence-type Einstein's equations turn out to be the Hamilton's equations of motion, which are derivable from the {\it non-vanishing} Hamiltonian by the variational principle. The Hamilton's equations are the evolution equations along the out-going null geodesic whose {\it affine} parameter serves as the time function. In the asymptotic region of asymptotically flat spacetimes, it is shown that the quasi-local quantities reduce to the Bondi energy, linear momentum, and angular momentum, and the corresponding fluxes become the Bondi fluxes. The quasi-local angular momentum turns out to be zero for any two-surface in the flat Minkowski spacetime. I also present a candidate for quasi-local {\it rotational} energy which agrees with the Carter's constant in the asymptotic region of the Kerr spacetime. Finally, a simple relation between energy-flux and angular momentum-flux of a generic gravitational radiation is discussed, whose existence reflects the fact that energy-flux always accompanies angular momentum-flux unless the flux is an s-wave.Comment: 36 pages, 3 figures, RevTex
    corecore