357 research outputs found
Signal for CP violation in decays
We analyze the partial rate asymmetry in
decays () which results from the interference of
the nonresonant decay amplitude and the resonant amplitude for followed by the decay . The CP
violating phase can be extracted from the measured asymmetry. We find
that the partial rate asymmetry for is
, while for it amounts .Comment: 3 pages, latex, no figures, Talk given by S. Fajfer at the Hyperons,
Charm and Beauty Hadrons, Genova, Italy, 30 June -3 July 1998, to appear as
proceedings in Nucl. Phys.
Inverse Seesaw Neutrino Mass from Lepton Triplets in the U(1)_Sigma Model
The inverse seesaw mechanism of neutrino mass, i.e. m_nu =
(m_D^2/m_N^2)epsilon_L where epsilon_L is small, is discussed in the context of
the U(1)_Sigma model. This is a gauge extension of the Standard Model of
particle interactions with lepton triplets (Sigma^+,Sigma^),Sigma^-) as (Type
III) seesaw anchors for obtaining small Majorana neutrino masses.Comment: 7 pages, no figur
Upper Bound on the Mass of the Type III Seesaw Triplet in an SU(5) Model
We investigate correlation between gauge coupling unification, fermion mass
spectrum, proton decay, perturbativity and ultraviolet cutoff within an SU(5)
grand unified theory with minimal scalar content and an extra adjoint
representation of fermions. We find strong correlation between the upper bound
on the mass of both the bosonic and fermionic SU(2) triplets and the cutoff.
The upper bound on the mass of fermionic triplet responsible for Type III
seesaw mechanism is 10^{2.1} GeV for the Planck scale cutoff. In that case both
the idea of grand unification and nature of seesaw mechanism could be tested at
future collider experiments through the production of those particles.
Moreover, the prediction for the proton decay lifetime is at most an order of
magnitude away from the present experimental limits. If the cutoff is lowered
these predictions change significantly. In the most general scenario, if one
does (not) neglect a freedom in the quark and lepton mixing angles, the upper
bound on the fermionic triplet mass is at 10^{5.4} GeV (10^{10} GeV). Since the
predictions of the model critically depend on the presence of the
higher-dimensional operators and corresponding cutoff we address the issue of
their possible origin and also propose alternative scenarios that implement the
hybrid seesaw framework of the original proposal.Comment: 13 pages, 2 figures, minor changes introduced to match the JHEP
versio
Bulk phantom fields, increasing warp factors and fermion localisation
A bulk phantom scalar field (with negative kinetic energy) in a sine--Gordon
type potential is used to generate an exact thick brane solution with an
increasing warp factor. It is shown that the growing nature of the warp factor
allows the localisation of massive as well as massless spin-half fermions on
the brane even without any additional non--gravitational interactions. The
exact solutions for the localised massive fermionic modes are presented and
discussed. The inclusion of a fermion--scalar Yukawa coupling appears to change
the mass spectrum and wave functions of the localised fermion though it does
not play the crucial role it did in the case of a decreasing warp factor.Comment: 11 pages, 3 figures, RevTex
The controversy in the process: potential scattering or resonance ?
The reaction shows a broad peak at 1.5
GeV in the channel which has no counterpart in the
channel. This "resonance" is considered as a candidate for a
state in the "s-channel". We show, however, that it can also
be explained by potential scattering of via the -
exchange in the "t-channel".Comment: 12 pages, latex, 3 postscript figures, to appear in Zeitschrift fur
Physi
- …