548 research outputs found

    Percolation of Superconductivity

    Full text link
    In case of superconductors whose electrons attract each other only if they are near certain centers, the question arises 'How many such centers are needed to make the ground state superconducting?' We shall examine it in the context of a random U Hubbard model. In short we study the case where U_i is -|U| and 0 with probability c and 1-c respectively on a lattice whose sites are labelled i using the Gorkov decoupling and the Coherent Potential Approximation (CPA). We argue that for this model there is a critical concentration c_0 below which the system is not a superconductor.Comment: 18 pages, 10 figure

    Spontaneous currents in a ferromagnet - normal metal - superconductor trilayer

    Full text link
    We discuss the ground state properties of the system composed of a normal metal sandwiched between ferromagnet and superconductor within a tight binding Hubbard model. We have solved the spin-polarized Hartree-Fock-Gorkov equations together with the Maxwell's equation (Ampere's law) and found a proximity induced Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in this system. Here we show that the inclusion of the normal metal layer in between those subsystems does not necessarily lead to the suppression of the FFLO phase. Moreover, we have found that depending on the thickness of the normal metal slab the system can be switched periodically between the state with the spontaneous current flowing to that one with no current. All these effects can be explained in terms of the Andreev bound states formed in such structures.Comment: 6 pages, 4 figure

    Spin Polarized Current in the Ground State of Superconductor - Ferromagnet - Insulator Trilayers

    Full text link
    We study the ground state properties of a superconductor - ferromagnet - insulator trilayer on the basis of a Hubbard Model featuring exchange splitting in the ferromagnet and electron - electron attraction in the superconductor. We solve the spin - polarized Hartree - Fock - Gorkov equations together with the Maxwell's equation (Ampere's law) fully self-consistently. For certain values of the exchange splitting we find that a spontaneous spin polarized current is generated in the ground state and is intimately related to Andreev bound states at the Fermi level. Moreover, the polarization of the current strongly depends on the band filling.Comment: 13 pages, 14 figure

    Optical properties of random alloys : Application to Cu_{50}Au_{50} and Ni_{50}Pt_{50}

    Full text link
    In an earlier paper [K. K. Saha and A. Mookerjee, Phys. Rev. B 70 (2004) (in press) or, cond-mat/0403456] we had presented a formulation for the calculation of the configuration-averaged optical conductivity in random alloys. Our formulation is based on the augmented-space theorem introduced by one of us [A. Mookerjee, J. Phys. C: Solid State Phys. 6, 1340 (1973)]. In this communication we shall combine our formulation with the tight-binding linear muffin-tin orbitals (TB-LMTO) technique to study the optical conductivities of two alloys Cu_{50}Au_{50} and Ni_{50}Pt_{50}.Comment: 5 pages, 7 figure
    corecore