37,454 research outputs found

    A pulsed Sagnac source of narrowband polarization-entangled photons

    Full text link
    We demonstrate pulsed operation of a bidirectionally pumped polarization Sagnac interferometric down-conversion source and its generation of narrowband, high-visibility polarization-entangled photons. Driven by a narrowband, mode-locked pump at 390.35 nm, the phase-stable Sagnac source with a type-II phase-matched periodically poled KTiOPO4_4 crystal is capable of producing 0.01 entangled pair per pulse in a 0.15-nm bandwidth centered at 780.7 nm with 1 mW of average pump power at a repetition rate of 31.1 MHz. We have achieved a mean photon-pair generation rate of as high as 0.7 pair per pulse, at which multi-pair events dominate and significantly reduce the two-photon quantum-interference visibility. For low generation probability α\alpha, the reduced visibility V=1αV=1-\alpha is independent of the throughput efficiency and of the polarization analysis basis, which can be utilized to yield an accurate estimate of the generation rate α\alpha. At low α\alpha we have characterized the source entanglement quality in three different ways: average quantum-interference visibility of 99%, the Clauser-Horne-Shimony-Holt SS parameter of 2.739±0.1192.739 \pm 0.119, and quantum state tomography with 98.85% singlet-state fidelity. The narrowband pulsed Sagnac source of entangled photons is suitable for use in quantum information processing applications such as free-space quantum key distribution.Comment: 10 pages, 6 figures, accepted for publication in Phys. Rev.

    Local Interstellar Medium Kinematics towards the Southern Coalsack and Chamaeleon-Musca dark clouds

    Full text link
    The results of a spectroscopic programme aiming to investigate the kinematics of the local interstellar medium components towards the Southern Coalsack and Chamaeleon-Musca dark clouds are presented. The analysis is based upon high-resolution (R ~ 60,000) spectra of the insterstellar NaI D absorption lines towards 63 B-type stars (d < 500 pc) selected to cover these clouds and the connecting area defined by the Galactic coordinates: 308 > l > 294 and -22 < b < 5. The radial velocities, column densities, velocity dispersions, colour excess and photometric distances to the stars are used to understand the kinematics and distribution of the interstellar cloud components. The analysis indicates that the interstellar gas is distributed in two extended sheet-like structures permeating the whole area, one at d < 60 pc and another around 120-150 pc from the Sun. The dust and gas feature around 120-150 pc seem to be part of an extended large scale feature of similar kinematic properties, supposedly identified with the interaction zone of the Local and Loop I bubbles.Comment: 19 pages, accepted for MNRA

    Anomaly Cancellations in Brane Tilings

    Get PDF
    We re-interpret the anomaly cancellation conditions for the gauge symmetries and the baryonic flavor symmetries in quiver gauge theories realized by the brane tilings from the viewpoint of flux conservation on branes.Comment: 10 pages, LaTeX; v2: minor corrections, a note on the zero-form flux adde

    Entanglement degradation in the solid state: interplay of adiabatic and quantum noise

    Get PDF
    We study entanglement degradation of two non-interacting qubits subject to independent baths with broadband spectra typical of solid state nanodevices. We obtain the analytic form of the concurrence in the presence of adiabatic noise for classes of entangled initial states presently achievable in experiments. We find that adiabatic (low frequency) noise affects entanglement reduction analogously to pure dephasing noise. Due to quantum (high frequency) noise, entanglement is totally lost in a state-dependent finite time. The possibility to implement on-chip both local and entangling operations is briefly discussed.Comment: Replaced with published version. Minor change

    Revival of quantum correlations without system-environment back-action

    Get PDF
    Revivals of quantum correlations have often been explained in terms of back-action on quantum systems by their quantum environment(s). Here we consider a system of two independently evolving qubits, each locally interacting with a classical random external field. The environments of the qubits are also independent, and there is no back-action on the qubits. Nevertheless, entanglement, quantum discord and classical correlations between the two qubits may revive in this model. We explain the revivals in terms of correlations in a classical-quantum state of the environments and the qubits. Although classical states cannot store entanglement on their own, they can play a role in storing and reviving entanglement. It is important to know how the absence of back-action, or modelling an environment as classical, affects the kind of system time evolutions one is able to describe. We find a class of global time evolutions where back-action is absent and for which there is no loss of generality in modelling the environment as classical. Finally, we show that the revivals can be connected with the increase of a parameter used to quantify non-Markovianity of the single-qubit dynamics.Comment: 8 pages, 4 figures; this version to appear in Phys. Rev.
    corecore