25 research outputs found

    High-affinity T-cell receptor specific for MyD88 L265P mutation for adoptive T-cell therapy of B-cell malignancies

    Get PDF
    BACKGROUND: Adoptive transfer of engineered T cells has shown remarkable success in B-cell malignancies. However, the most common strategy of targeting lineage-specific antigens can lead to undesirable side effects. Also, a substantial fraction of patients have refractory disease. Novel treatment approaches with more precise targeting may be an appealing alternative. Oncogenic somatic mutations represent ideal targets because of tumor specificity. Mutation-derived neoantigens can be recognized by T-cell receptors (TCRs) in the context of MHC-peptide presentation. METHODS: Here we have generated T-cell lines from healthy donors by autologous in vitro priming, targeting a missense mutation on the adaptor protein MyD88, changing leucine at position 265 to proline (MyD88 L265P), which is one of the most common driver mutations found in B-cell lymphomas. RESULTS: Generated T-cell lines were selectively reactive against the mutant HLA-B*07:02-restricted epitope but not against the corresponding wild-type peptide. Cloned TCRs from these cell lines led to mutation-specific and HLA-restricted reactivity with varying functional avidity. T cells engineered with a mutation-specific TCR (TCR-T cells) recognized and killed B-cell lymphoma cell lines characterized by intrinsic MyD88 L265P mutation. Furthermore, TCR-T cells showed promising therapeutic efficacy in xenograft mouse models. In addition, initial safety screening did not indicate any sign of off-target reactivity. CONCLUSION: Taken together, our data suggest that mutation-specific TCRs can be used to target the MyD88 L265P mutation, and hold promise for precision therapy in a significant subgroup of B-cell malignancies, possibly achieving the goal of absolute tumor specificity, a long sought-after dream of immunotherapy

    Patient-derived xenografts from solid tumors (PDX) for models of metastasis

    No full text
    In cancer research, availability of clinically relevant tumor models is still essential for drug testing, proof of concept studies, and also molecular analyses. To achieve this, models are of advantage, which more closely reflect heterogeneity of tumors. In this regard, patient-derived xenograft (PDX) models more closely recapitulate the native tumor biology, tissue composition, and molecular characteristics. Since metastasis is still the major challenge of tumor therapy, models are pivotal, which resemble this particular property. In this context, PDX model-derived metastasis is of particular interest for testing antimetastatic therapies for their efficacy to better target this systemic disease. This protocol describes the establishment of PDX models from tumor specimen and their applicability for PDX-derived metastasis at metastatic sites such as liver and lung, which are also clinically relevant for the systemic spread of cancer. Analysis of metastasis and methods for quantification of metastatic spread are provided

    A comprehensively characterized large panel of head and neck cancer patient-derived xenografts identifies the mTOR inhibitor everolimus as potential new treatment option

    No full text
    Patient-derived xenograft (PDX) models have shown to reflect original patient tumors better than any other preclinical model. We embarked in a study establishing a large panel of head and neck squamous cell carcinomas PDX for biomarker analysis and evaluation of established and novel compounds. Out of 115 transplanted specimens 52 models were established of which 29 were characterized for response to docetaxel, cetuximab, methotrexate, carboplatin, 5-fluorouracil and everolimus. Further, tumors were subjected to sequencing analysis and gene expression profiling of selected mTOR pathway members. Most frequent response was observed for docetaxel and cetuximab. Responses to carboplatin, 5-fluorouracil and methotrexate were moderate. Everolimus revealed activity in the majority of PDX. Mutational profiling and gene expression analysis did not reveal a predictive biomarker for everolimus even though by trend RPS6KB1 mRNA expression was associated with response. In conclusion we demonstrate a comprehensively characterized panel of head and neck cancer PDX models, which represent a valuable and renewable tissue resource for evaluation of novel compounds and associated biomarkers

    N-myristoyltransferase inhibition is synthetic lethal in MYC-deregulated cancers

    No full text
    Human N-myristoyltransferases (NMTs) catalyze N-terminal protein myristoylation, a modification regulating membrane trafficking and interactions of >100 proteins. NMT is a promising target in cancer, but a mechanistic rationale for targeted therapy remains poorly defined. Here, large-scale cancer cell line screens against a panel of NMT inhibitors (NMTi) were combined with systems-level analyses to reveal that NMTi is synthetic lethal with deregulated MYC. Synthetic lethality is mediated by post-transcriptional failure in mitochondrial respiratory complex I protein synthesis concurrent with loss of myristoylation and degradation of complex I assembly factor NDUFAF4, followed by mitochondrial dysfunction specifically in MYC-deregulated cancer cells. NMTi eliminated MYC-deregulated tumors in vivo without overt toxicity, providing a new paradigm in which targeting a constitutive co-translational protein modification is synthetically lethal in MYC-deregulated cancers. ONE-SENTENCE SUMMARY: N-myristoyltransferase inhibition leads to post-transcriptional complex I failure and cell death in MYC-deregulated cancers

    Activated SUMOylation restricts MHC class I antigen presentation to confer immune evasion in cancer.

    Get PDF
    Activated SUMOylation is a hallmark of cancer. Starting from a targeted screening for SUMO-regulated immune evasion mechanisms, we identified an evolutionarily conserved function of activated SUMOylation, which attenuated the immunogenicity of tumor cells. Activated SUMOylation allowed cancer cells to evade CD8+ T cell-mediated immunosurveillance by suppressing the MHC class I (MHC-I) antigen-processing and presentation machinery (APM). Loss of the MHC-I APM is a frequent cause of resistance to cancer immunotherapies, and the pharmacological inhibition of SUMOylation (SUMOi) resulted in reduced activity of the transcriptional repressor scaffold attachment factor B (SAFB) and induction of the MHC-I APM. Consequently, SUMOi enhanced the presentation of antigens and the susceptibility of tumor cells to CD8+ T cell-mediated killing. Importantly, SUMOi also triggered the activation of CD8+ T cells and thereby drove a feed-forward loop amplifying the specific antitumor immune response. In summary, we showed that activated SUMOylation allowed tumor cells to evade antitumor immunosurveillance, and we have expanded the understanding of SUMOi as a rational therapeutic strategy for enhancing the efficacy of cancer immunotherapies

    Activated SUMOylation restricts MHC class I antigen presentation to confer immune evasion in cancer

    No full text
    Activated SUMOylation is a hallmark of cancer. Starting from a targeted screening for SUMO-regulated immune evasion mechanisms, we identified an evolutionarily conserved function of activated SUMOylation, which attenuated the immunogenicity of tumor cells. Activated SUMOylation allowed cancer cells to evade CD8+ T cell–mediated immunosurveillance by suppressing the MHC class I (MHC-I) antigen-processing and presentation machinery (APM). Loss of the MHC-I APM is a frequent cause of resistance to cancer immunotherapies, and the pharmacological inhibition of SUMOylation (SUMOi) resulted in reduced activity of the transcriptional repressor scaffold attachment factor B (SAFB) and induction of the MHC-I APM. Consequently, SUMOi enhanced the presentation of antigens and the susceptibility of tumor cells to CD8+ T cell–mediated killing. Importantly, SUMOi also triggered the activation of CD8+ T cells and thereby drove a feed-forward loop amplifying the specific antitumor immune response. In summary, we showed that activated SUMOylation allowed tumor cells to evade antitumor immunosurveillance, and we have expanded the understanding of SUMOi as a rational therapeutic strategy for enhancing the efficacy of cancer immunotherapies
    corecore