356 research outputs found
On Security and Sparsity of Linear Classifiers for Adversarial Settings
Machine-learning techniques are widely used in security-related applications,
like spam and malware detection. However, in such settings, they have been
shown to be vulnerable to adversarial attacks, including the deliberate
manipulation of data at test time to evade detection. In this work, we focus on
the vulnerability of linear classifiers to evasion attacks. This can be
considered a relevant problem, as linear classifiers have been increasingly
used in embedded systems and mobile devices for their low processing time and
memory requirements. We exploit recent findings in robust optimization to
investigate the link between regularization and security of linear classifiers,
depending on the type of attack. We also analyze the relationship between the
sparsity of feature weights, which is desirable for reducing processing cost,
and the security of linear classifiers. We further propose a novel octagonal
regularizer that allows us to achieve a proper trade-off between them. Finally,
we empirically show how this regularizer can improve classifier security and
sparsity in real-world application examples including spam and malware
detection
MTDeep: Boosting the Security of Deep Neural Nets Against Adversarial Attacks with Moving Target Defense
Present attack methods can make state-of-the-art classification systems based
on deep neural networks misclassify every adversarially modified test example.
The design of general defense strategies against a wide range of such attacks
still remains a challenging problem. In this paper, we draw inspiration from
the fields of cybersecurity and multi-agent systems and propose to leverage the
concept of Moving Target Defense (MTD) in designing a meta-defense for
'boosting' the robustness of an ensemble of deep neural networks (DNNs) for
visual classification tasks against such adversarial attacks. To classify an
input image, a trained network is picked randomly from this set of networks by
formulating the interaction between a Defender (who hosts the classification
networks) and their (Legitimate and Malicious) users as a Bayesian Stackelberg
Game (BSG). We empirically show that this approach, MTDeep, reduces
misclassification on perturbed images in various datasets such as MNIST,
FashionMNIST, and ImageNet while maintaining high classification accuracy on
legitimate test images. We then demonstrate that our framework, being the first
meta-defense technique, can be used in conjunction with any existing defense
mechanism to provide more resilience against adversarial attacks that can be
afforded by these defense mechanisms. Lastly, to quantify the increase in
robustness of an ensemble-based classification system when we use MTDeep, we
analyze the properties of a set of DNNs and introduce the concept of
differential immunity that formalizes the notion of attack transferability.Comment: Accepted to the Conference on Decision and Game Theory for Security
(GameSec), 201
Security Evaluation of Support Vector Machines in Adversarial Environments
Support Vector Machines (SVMs) are among the most popular classification
techniques adopted in security applications like malware detection, intrusion
detection, and spam filtering. However, if SVMs are to be incorporated in
real-world security systems, they must be able to cope with attack patterns
that can either mislead the learning algorithm (poisoning), evade detection
(evasion), or gain information about their internal parameters (privacy
breaches). The main contributions of this chapter are twofold. First, we
introduce a formal general framework for the empirical evaluation of the
security of machine-learning systems. Second, according to our framework, we
demonstrate the feasibility of evasion, poisoning and privacy attacks against
SVMs in real-world security problems. For each attack technique, we evaluate
its impact and discuss whether (and how) it can be countered through an
adversary-aware design of SVMs. Our experiments are easily reproducible thanks
to open-source code that we have made available, together with all the employed
datasets, on a public repository.Comment: 47 pages, 9 figures; chapter accepted into book 'Support Vector
Machine Applications
Unitarity of the Leptonic Mixing Matrix
We determine the elements of the leptonic mixing matrix, without assuming
unitarity, combining data from neutrino oscillation experiments and weak
decays. To that end, we first develop a formalism for studying neutrino
oscillations in vacuum and matter when the leptonic mixing matrix is not
unitary. To be conservative, only three light neutrino species are considered,
whose propagation is generically affected by non-unitary effects. Precision
improvements within future facilities are discussed as well.Comment: Standard Model radiative corrections to the invisible Z width
included. Some numerical results modified at the percent level. Updated with
latest bounds on the rare tau decay. Physical conculsions unchange
Keyed Non-Parametric Hypothesis Tests
The recent popularity of machine learning calls for a deeper understanding of
AI security. Amongst the numerous AI threats published so far, poisoning
attacks currently attract considerable attention. In a poisoning attack the
opponent partially tampers the dataset used for learning to mislead the
classifier during the testing phase.
This paper proposes a new protection strategy against poisoning attacks. The
technique relies on a new primitive called keyed non-parametric hypothesis
tests allowing to evaluate under adversarial conditions the training input's
conformance with a previously learned distribution . To do so we
use a secret key unknown to the opponent.
Keyed non-parametric hypothesis tests differs from classical tests in that
the secrecy of prevents the opponent from misleading the keyed test
into concluding that a (significantly) tampered dataset belongs to
.Comment: Paper published in NSS 201
Robust Machine Learning for Malware Detection over Time
The presence and persistence of Android malware is an on-going threat that plagues this information era, and machine learning technologies are now extensively used to deploy more effective detectors that can block the majority of these malicious programs. However, these algorithms have not been developed to pursue the natural evolution of malware, and their performances significantly degrade over time because of such concept-drift. Currently, state-of-the-art techniques only focus on detecting the presence of such drift, or they address it by relying on frequent updates of models. Hence, there is a lack of knowledge regarding the cause of the concept drift, and ad-hoc solutions that can counter the passing of time are still under-investigated. In this work, we commence to address these issues as we propose (i) a drift-analysis framework to identify which characteristics of data are causing the drift, and (ii) SVM-CB, a time-aware classifier that leverages the drift-analysis information to slow down the performance drop. We highlight the efficacy of our contribution by comparing its degradation over time with a state-of-the-art classifier, and we show that SVM-CB better withstand the distribution changes that naturally characterizes the malware domain. We conclude by discussing the limitations of our approach and how our contribution can be taken as a first step towards more time-resistant classifiers that not only tackle, but also understand the concept drift that affect data
Fault Sneaking Attack: a Stealthy Framework for Misleading Deep Neural Networks
Despite the great achievements of deep neural networks (DNNs), the
vulnerability of state-of-the-art DNNs raises security concerns of DNNs in many
application domains requiring high reliability.We propose the fault sneaking
attack on DNNs, where the adversary aims to misclassify certain input images
into any target labels by modifying the DNN parameters. We apply ADMM
(alternating direction method of multipliers) for solving the optimization
problem of the fault sneaking attack with two constraints: 1) the
classification of the other images should be unchanged and 2) the parameter
modifications should be minimized. Specifically, the first constraint requires
us not only to inject designated faults (misclassifications), but also to hide
the faults for stealthy or sneaking considerations by maintaining model
accuracy. The second constraint requires us to minimize the parameter
modifications (using L0 norm to measure the number of modifications and L2 norm
to measure the magnitude of modifications). Comprehensive experimental
evaluation demonstrates that the proposed framework can inject multiple
sneaking faults without losing the overall test accuracy performance.Comment: Accepted by the 56th Design Automation Conference (DAC 2019
Feature-Guided Black-Box Safety Testing of Deep Neural Networks
Despite the improved accuracy of deep neural networks, the discovery of
adversarial examples has raised serious safety concerns. Most existing
approaches for crafting adversarial examples necessitate some knowledge
(architecture, parameters, etc.) of the network at hand. In this paper, we
focus on image classifiers and propose a feature-guided black-box approach to
test the safety of deep neural networks that requires no such knowledge. Our
algorithm employs object detection techniques such as SIFT (Scale Invariant
Feature Transform) to extract features from an image. These features are
converted into a mutable saliency distribution, where high probability is
assigned to pixels that affect the composition of the image with respect to the
human visual system. We formulate the crafting of adversarial examples as a
two-player turn-based stochastic game, where the first player's objective is to
minimise the distance to an adversarial example by manipulating the features,
and the second player can be cooperative, adversarial, or random. We show that,
theoretically, the two-player game can con- verge to the optimal strategy, and
that the optimal strategy represents a globally minimal adversarial image. For
Lipschitz networks, we also identify conditions that provide safety guarantees
that no adversarial examples exist. Using Monte Carlo tree search we gradually
explore the game state space to search for adversarial examples. Our
experiments show that, despite the black-box setting, manipulations guided by a
perception-based saliency distribution are competitive with state-of-the-art
methods that rely on white-box saliency matrices or sophisticated optimization
procedures. Finally, we show how our method can be used to evaluate robustness
of neural networks in safety-critical applications such as traffic sign
recognition in self-driving cars.Comment: 35 pages, 5 tables, 23 figure
The role of organic compounds in artificial saliva for corrosion studies: evidence from XPS analyses
Several formulations of artificial saliva have been used for corrosion studies. The present work focuses on the effect of different saliva formulations on the composition of the surface film formed on CuZn37 brass alloy by X-ray photoelectron spectroscopy (XPS), in order to clarify the corrosion mechanism of historical brass wind instruments when used. Three different saliva solutions, Darvell (D), Carter-Brugirard (C-B) and SALMO, were selected. They differ for the content of the organic compounds. The XPS results show the presence of a film made of CuSCN and zinc-phosphate on the brass exposed to C-B and SALMO. In the case of samples exposed to D formulation, phosphorus is not revealed, a decrease in the zinc content in the film is detected and the S 2p shows the presence of a second component together with the one ascribed to CuSCN. A comparison with the results obtained on the pure metals in the presence of the organic compounds suggests that the formation of zinc and copper complexes may lead to thin and less protective surface film and thus to the observed high corrosion rates
Industrial practitioners' mental models of adversarial machine learning
Although machine learning is widely used in practice, little is known about practitioners' understanding of potential security challenges. In this work, we close this substantial gap and contribute a qualitative study focusing on developers' mental models of the machine learning pipeline and potentially vulnerable components. Similar studies have helped in other security fields to discover root causes or improve risk communication. Our study reveals two facets of practitioners' mental models of machine learning security. Firstly, practitioners often confuse machine learning security with threats and defences that are not directly related to machine learning. Secondly, in contrast to most academic research, our participants perceive security of machine learning as not solely related to individual models, but rather in the context of entire workflows that consist of multiple components. Jointly with our additional findings, these two facets provide a foundation to substantiate mental models for machine learning security and have implications for the integration of adversarial machine learning into corporate workflows, decreasing practitioners' reported uncertainty, and appropriate regulatory frameworks for machine learning security
- …