343,756 research outputs found
Chiral expansion of the decay width
A chiral field theory of mesons has been applied to study the contribution of
the current quark masses to the decay width at
the next leading order. enhancement has been predicted and there is no
new parameter.Comment: 9 page
Excitation function of nucleon and pion elliptic flow in relativistic heavy-ion collisions
Within a relativistic transport (ART) model for heavy-ion collisions, we show
that the recently observed characteristic change from out-of-plane to in-plane
elliptic flow of protons in mid-central Au+Au collisions as the incident energy
increases is consistent with the calculated results using a stiff nuclear
equation of state (K=380 MeV). We have also studied the elliptic flow of pions
and the transverse momentum dependence of both the nucleon and pion elliptic
flow in order to gain further insight about the collision dynamics.Comment: 8 pages, 2 figure
The influence of reconstruction criteria on the sensitive probes of the symmetry potential
Different criteria of constructing clusters and tracing back
resonances from the intermediate-energy neutron-rich HICs are discussed by
employing the updated UrQMD transport model. It is found that both the
phase-space and the coordinate-density criteria affect the single and the
double neutron/proton ratios of free nucleons at small transverse momenta, but
the influence becomes invisible at large transverse momenta. The effect of
different methods of reconstructing freeze-out s on the
ratio is strong in a large kinetic energy region.Comment: 8 pages, 7 fig
Correlations of chaotic eigenfunctions: a semiclassical analysis
We derive a semiclassical expression for an energy smoothed autocorrelation
function defined on a group of eigenstates of the Schr\"odinger equation. The
system we considered is an energy-conserved Hamiltonian system possessing
time-invariant symmetry. The energy smoothed autocorrelation function is
expressed as a sum of three terms. The first one is analogous to Berry's
conjecture, which is a Bessel function of the zeroth order. The second and the
third terms are trace formulae made from special trajectories. The second term
is found to be direction dependent in the case of spacing averaging, which
agrees qualitatively with previous numerical observations in high-lying
eigenstates of a chaotic billiard.Comment: Revtex, 13 pages, 1 postscript figur
decays
Effective chiral theory of mesons is applied to study the four decay modes of
. Theoretical values of the branching ratios are in
agreement with the data. The theory predicts that the resonance plays a
dominant role in these decays. There is no new parameter in this study.Comment: 12 pages and one figur
Rank-frequency relation for Chinese characters
We show that the Zipf's law for Chinese characters perfectly holds for
sufficiently short texts (few thousand different characters). The scenario of
its validity is similar to the Zipf's law for words in short English texts. For
long Chinese texts (or for mixtures of short Chinese texts), rank-frequency
relations for Chinese characters display a two-layer, hierarchic structure that
combines a Zipfian power-law regime for frequent characters (first layer) with
an exponential-like regime for less frequent characters (second layer). For
these two layers we provide different (though related) theoretical descriptions
that include the range of low-frequency characters (hapax legomena). The
comparative analysis of rank-frequency relations for Chinese characters versus
English words illustrates the extent to which the characters play for Chinese
writers the same role as the words for those writing within alphabetical
systems.Comment: To appear in European Physical Journal B (EPJ B), 2014 (22 pages, 7
figures
Directed flow of neutral strange particles at AGS
Directed flow of neutral strange particles in heavy ion collisions at AGS is
studied in the ART transport model. Using a lambda mean-field potential which
is 2/3 of that for a nucleon as predicted by the constituent quark model,
lambdas are found to flow with protons but with a smaller flow parameter as
observed in experiments. For kaons, their repulsive potential, which is
calculated from the impulse approximation using the measured kaon-nucleon
scattering length, leads to a smaller anti-flow than that shown in the
preliminary E895 data. Implications of this discrepancy are discussed.Comment: 6 pages, 2 figure
Difficulties in probing density dependent symmetry potential with the HBT interferometry
Based on the updated UrQMD transport model, the effect of the symmetry
potential energy on the two-nucleon HBT correlation is investigated with the
help of the coalescence program for constructing clusters, and the CRAB
analyzing program of the two-particle HBT correlation. An obvious non-linear
dependence of the neutron-proton (or neutron-neutron) HBT correlation function
() at small relative momenta on the stiffness factor of the
symmetry potential energy is found: when , the
increases rapidly with increasing , while it starts to saturate if
. It is also found that both the symmetry potential energy
at low densities and the conditions of constructing clusters at the late stage
of the whole process influence the two-nucleon HBT correlation with the same
power.Comment: 11 pages, 4 figure
Differential flow in heavy-ion collisions at balance energies
A strong differential transverse collective flow is predicted for the first
time to occur in heavy-ion collisions at balance energies. We also give a novel
explanation for the disappearance of the total transverse collective flow at
the balance energies. It is further shown that the differential flow especially
at high transverse momenta is a useful microscope capable of resolving the
balance energy's dual sensitivity to both the nuclear equation of state and
in-medium nucleon-nucleon cross sections in the reaction dynamics.Comment: Phys. Rev. Lett. (1999) in pres
Envelope excitations in electronegative plasmas with electrons featuring the Tsallis distribution
We examine the modulational instability (MI) of ion-acoustic waves (IAWs) in
an electronegative plasma containing positive and negative ions as well as
electrons that follow the nonextensive statistics proposed by Tsallis [J. Stat.
Phys. 52, 479 (1988)]. Using the reductive perturbation method (RPM), the
nonlinear Schr\"{o}dinger equation (NLSE) that governs the modulational
instability of the IAWs is obtained. Inspired by the experimental work of
Ichiki \emph{et al.} [Phys. Plasmas 8, 4275 (2001)], three types of
electronegative plasmas are investigated. The effects of various parameters on
the propagation of IAWs are discussed in detail numerically. We find that the
plasma supports both bright and dark solutions. The presence of the
non-extensively distributed electrons is found to play a crucial role in the
formation of envelope excitations. The region in the parameter space where the
MI exists depends sensitively on the positive to negative ion mass ratio (M)
and negative to positive ion density ratio (). An extensive range of the
nonextensive -parameters {} is considered and in each case the MI
sets in under different conditions. The finding of this investigation is useful
for understanding stable wave propagation of envelope ion-acoustic solitary
waves in space and laboratory plasmas comprising ions with both positive and
negative charges as well as non-Maxwellian electrons.Comment: 13 pages, 8 figures, to appear in Physics of Plasma
- …
