17 research outputs found

    Shortcut Removal for Improved OOD-Generalization

    Full text link
    Machine learning is a data-driven discipline, and learning success is largely dependent on the quality of the underlying data sets. However, it is becoming increasingly clear that even high performance on held-out test data does not necessarily mean that a model generalizes or learns anything meaningful at all. One reason for this is the presence of machine learning shortcuts, i.e., hints in the data that are predictive but accidental and semantically unconnected to the problem. We present a new approach to detect such shortcuts and a technique to automatically remove them from datasets. Using an adversarially trained lens, any small and highly predictive clues in images can be detected and removed. We show that this approach 1) does not cause degradation of model performance in the absence of these shortcuts, and 2) reliably identifies and neutralizes shortcuts from different image datasets. In our experiments, we are able to recover up to 93,8% of model performance in the presence of different shortcuts. Finally, we apply our model to a real-world dataset from the medical domain consisting of chest x-rays and identify and remove several types of shortcuts that are known to hinder real-world applicability. Thus, we hope that our proposed approach fosters real-world applicability of machine learning

    Physical Adversarial Examples for Multi-Camera Systems

    Full text link
    Neural networks build the foundation of several intelligent systems, which, however, are known to be easily fooled by adversarial examples. Recent advances made these attacks possible even in air-gapped scenarios, where the autonomous system observes its surroundings by, e.g., a camera. We extend these ideas in our research and evaluate the robustness of multi-camera setups against such physical adversarial examples. This scenario becomes ever more important with the rise in popularity of autonomous vehicles, which fuse the information of several cameras for their driving decision. While we find that multi-camera setups provide some robustness towards past attack methods, we see that this advantage reduces when optimizing on multiple perspectives at once. We propose a novel attack method that we call Transcender-MC, where we incorporate online 3D renderings and perspective projections in the training process. Moreover, we motivate that certain data augmentation techniques can facilitate the generation of successful adversarial examples even further. Transcender-MC is 11% more effective in successfully attacking multi-camera setups than state-of-the-art methods. Our findings offer valuable insights regarding the resilience of object detection in a setup with multiple cameras and motivate the need of developing adequate defense mechanisms against them

    Shortcut Detection with Variational Autoencoders

    Full text link
    For real-world applications of machine learning (ML), it is essential that models make predictions based on well-generalizing features rather than spurious correlations in the data. The identification of such spurious correlations, also known as shortcuts, is a challenging problem and has so far been scarcely addressed. In this work, we present a novel approach to detect shortcuts in image and audio datasets by leveraging variational autoencoders (VAEs). The disentanglement of features in the latent space of VAEs allows us to discover feature-target correlations in datasets and semi-automatically evaluate them for ML shortcuts. We demonstrate the applicability of our method on several real-world datasets and identify shortcuts that have not been discovered before.Comment: Accepted at the ICML 2023 Workshop on Spurious Correlations, Invariance and Stabilit

    Protecting Publicly Available Data With Machine Learning Shortcuts

    Full text link
    Machine-learning (ML) shortcuts or spurious correlations are artifacts in datasets that lead to very good training and test performance but severely limit the model's generalization capability. Such shortcuts are insidious because they go unnoticed due to good in-domain test performance. In this paper, we explore the influence of different shortcuts and show that even simple shortcuts are difficult to detect by explainable AI methods. We then exploit this fact and design an approach to defend online databases against crawlers: providers such as dating platforms, clothing manufacturers, or used car dealers have to deal with a professionalized crawling industry that grabs and resells data points on a large scale. We show that a deterrent can be created by deliberately adding ML shortcuts. Such augmented datasets are then unusable for ML use cases, which deters crawlers and the unauthorized use of data from the internet. Using real-world data from three use cases, we show that the proposed approach renders such collected data unusable, while the shortcut is at the same time difficult to notice in human perception. Thus, our proposed approach can serve as a proactive protection against illegitimate data crawling.Comment: Published at BMVC 202
    corecore