20 research outputs found

    circPVT1 and PVT1/AKT3 show a role in cell proliferation, apoptosis, and tumor subtype-definition in small cell lung cancer

    Get PDF
    Small cell lung cancer (SCLC) is treated as a homogeneous disease, although the expression of NEUROD1, ASCL1, POU2F3, and YAP1 identifies distinct molecular subtypes. The MYC oncogene, amplified in SCLC, was recently shown to act as a lineage-specific factor to associate subtypes with histological classes. Indeed, MYC-driven SCLCs show a distinct metabolic profile and drug sensitivity. To disentangle their molecular features, we focused on the co-amplified PVT1, frequently overexpressed and originating circular (circRNA) and chimeric RNAs. We analyzed hsa_circ_0001821 (circPVT1) and PVT1/AKT3 (chimPVT1) as examples of such transcripts, respectively, to unveil their tumorigenic contribution to SCLC. In detail, circPVT1 activated a pro-proliferative and anti-apoptotic program when over-expressed in lung cells, and knockdown of chimPVT1 induced a decrease in cell growth and an increase of apoptosis in SCLC in vitro. Moreover, the investigated PVT1 transcripts underlined a functional connection between MYC and YAP1/POU2F3, suggesting that they contribute to the transcriptional landscape associated with MYC amplification. In conclusion, we have uncovered a functional role of circular and chimeric PVT1 transcripts in SCLC; these entities may prove useful as novel biomarkers in MYC-amplified tumors.</p

    Probing the interaction between cisplatin and the therapeutic monoclonal antibody trastuzumab

    No full text
    Trastuzumab (Herceptin) is a fully humanized monoclonal immunoglobulin γ-1 (IgG1) antibody directed against the HER2/neu receptor, which is up-regulated in about 20–25% of gastric and breast cancer patients. The combination of trastuzumab with cisplatin results in a favourable toxicity profile in the case of advanced HER2-positive gastric and gastroesophageal cancers, gaining the approval by the U.S. FDA in 2010. However, the current literature reveals no atomic details about platinum drug–trastuzumab interactions, probably because of size limitations. Our research aim has been to probe the interaction between the monoclonal antibody trastuzumab and cisplatin by means of electrospray mass spectrometry analysis within the “divide and conquer” approach and 1H, 15N-HSQC NMR spectroscopy (using 15N-labeled cisplatin). We demonstrate that trastuzumab is able to bind platinum and that there is no involvement of the residues belonging to the antigen-binding region so that the receptor recognition is not affected

    Synthesis, Characterization, and Cytotoxicity of the First Oxaliplatin Pt(IV) Derivative Having a TSPO Ligand in the Axial Position

    No full text
    The first Pt(IV) derivative of oxaliplatin carrying a ligand for TSPO (the 18-kDa mitochondrial translocator protein) has been developed. The expression of the translocator protein in the brain and liver of healthy humans is usually low, oppositely to steroid-synthesizing and rapidly proliferating tissues, where TSPO is much more abundant. The novel Pt(IV) complex, cis,trans,cis-[Pt(ethanedioato)Cl{2-(2-(4-(6,8-dichloro-3-(2-(dipropylamino)-2-oxoethyl)imidazo[1,2-a]pyridin-2-yl)phenoxy)acetate)-ethanolato}(1R,2R-DACH)] (DACH = diaminocyclohexane), has been fully characterized by spectroscopic and spectrometric techniques and tested in vitro against human MCF7 breast carcinoma, U87 glioblastoma, and LoVo colon adenocarcinoma cell lines. In addition, affinity for TSPO (IC50 = 18.64 nM), cellular uptake (ca. 2 times greater than that of oxaliplatin in LoVo cancer cells, after 24 h treatment), and perturbation of cell cycle progression were investigated. Although the new compound was less active than oxaliplatin and did not exploit a synergistic proapoptotic effect due to the presence of the TSPO ligand, it appears to be promising in a receptor-mediated drug targeting context towards TSPO-overexpressing tumors, in particular colorectal cancer (IC50 = 2.31 ÎĽM after 72 h treatment)

    Gene Expression Comparison between Alcohol-Exposed Versus Not Exposed Pancreatic Ductal Adenocarcinoma Patients Reveals a Peculiar TGFβ-Related Phenotype: An Exploratory Analysis

    No full text
    Background: Over the past few decades, there has been much debate and research into the link between alcohol consumption and the development and progression of pancreatic ductal ade- nocarcinoma (PDAC). Objectives: To contribute to the ongoing discussion and gain further insights into this topic, our study analysed the gene expression differences in PDAC patients based on their alcohol consumption history. Methods: To this end, we interrogated a large publicly available da- taset. We next validated our findings in vitro. Results: Our findings revealed that patients with a history of alcohol consumption showed significant enrichment in the TGFβ-pathway: a signaling pathway implicated in cancer development and tumor progression. Specifically, our bioinformatic dissection of gene expression differences in 171 patients with PDAC showed that those who had consumed alcohol had higher levels of TGFβ-related genes. Moreover, we validated the role of the TGFβ pathway as one of the molecular drivers in producing massive stroma, a hallmark feature of PDAC, in patients with a history of alcohol consumption. This suggests that inhibition of the TGFβ pathway could serve as a novel therapeutic target for PDAC patients with a history of alcohol con- sumption and lead to increased sensitivity to chemotherapy. Our study provides valuable insights into the molecular mechanisms underlying the link between alcohol consumption and PDAC pro- gression. Conclusions: Our findings highlight the potential significance of the TGFβ pathway as a therapeutic target. The development of TGFβ-inhibitors may pave the way for developing more effective treatment strategies for PDAC patients with a history of alcohol consumption

    New oxaliplatin-pyrophosphato analogs with improved in vitro cytotoxicity

    No full text
    Two new Pt(II)-pyrophosphato complexes containing the carrier ligands cis-1,3- diaminocyclohexane (cis-1,3-DACH) and trans-1,2-diamine-4-cyclohexene (1,2-DACHEX), variants of the 1R,2R-diaminocyclohexane ligand present in the clinically used Pt-drug oxaliplatin, have been synthesized with the aim of developing new potential antitumor drugs with high bone tropism. The complexes are more stable at physiological pH than in acid conditions, with Na2[Pt(pyrophosphato)(cis-1,3-DACH)] (1) slightly more stable than Pt(dihydrogenpyrophosphato)(1,2-DACHEX)] (2). The greater reactivity at acidic pH ensures a greater efficacy at the tumor site. Preliminary NMR studies indicate that 1 and 2 react slowly with 5’-GMP (used as a model of nucleic acids), releasing the pyrophosphate ligand and affording the bis 5’-GMP adduct. In vitro cytotoxicity assays performed against a panel of four human cancer cell lines have shown that both compounds are more active than oxaliplatin. Flow cytometry studies on HCT116 cells showed that the pyrophosphato compounds with the non-classical 1,3- and 1,4- diaminocyclohexane ligands (1 and 4) are the most capable to induce cells’ death by apoptosis and necrosis

    Gene Expression Comparison between the Lymph Node-Positive and -Negative Reveals a Peculiar Immune Microenvironment Signature and a Theranostic Role for WNT Targeting in Pancreatic Ductal Adenocarcinoma: A Pilot Study

    No full text
    Over the past several years there has been much debate with regards to the prognostic and clinical significance of pancreatic ductal adenocarcinoma (PDAC) with lymph nodes metastasis. The PDAC gene expression knowledge and the biologic alterations underlying the lymph node involvement convey a clinical implication in dealing with the theranostic window. To this end, we provide an original bioinformatic dissection of the gene expression differences of PDAC according to the nodal involvement from a large public available dataset. Comprehensive transcriptomic analysis from 143 RNA-seq patient's derived samples indicated that WNT increased activation and a peculiar immune microenvironment identify subjects with nodal involvement. In frame of this thinking, we validated the WNT pathway role in increasing the likelihood of lymphatic dissemination in vitro. Moreover, we demonstrated for the first time in a PDAC model the potential therapeutic window that XAV-939-a specific WNT pathway inhibitor-has in re-educating a tumor-permissive immune system. Finally, we outline the potential implication on bystander molecular drivers exerted by WNT molecular inhibition, providing a picture of the proteomic oncogenic landscape changes elicited by XAV-939 on PDAC cells and their clinical implication. Our findings hold the promise to identify novel immune-based therapeutic strategies targeting WNT to enhance PDAC cytotoxicity and restore anti-PDAC immunity in node-positive disease

    CAFs and TGF-β Signaling Activation by Mast Cells Contribute to Resistance to Gemcitabine/Nabpaclitaxel in Pancreatic Cancer

    Get PDF
    Tumor&ndash;stroma interactions are of key importance for pancreatic ductal adenocarcinoma (PDAC) progression. Our aim was to investigate whether cancer associated fibroblasts (CAFs) and mast cells (MC) affected the sensitivity of PDAC cells to gemcitabine/nabpaclitaxel (GEM/NAB). For this purpose, the combination cytotoxicity and the effect on tumor invasion and angiogenesis were evaluated with or without a conditioned medium from the mast cell line HMC-1 (human mast cell line-1 cells) and CAFs. Beside the clinical outcome of a homogenous population of PDAC patients, receiving GEM/NAB, was correlated to the circulating levels of mast cell tryptase and to a panel of inflammatory and immunosuppressive cytokines. CAFs neither affected drugs&rsquo; cytotoxicity nor the inhibition of angiogenesis, but promoted tumor cell invasion. The MC instead, caused resistance to drugs by reducing apoptosis, by activating the TGF-&beta; signalling and by promoting tumor invasion. Indeed, the inhibition of T&beta;RI serine/threonine kinase activity by galunisertib restored drugs cytotoxicity. Moreover, MC induced the release of TGF-&beta;1, and increased expression of PAR-2, ERK1/2 and Akt activation. Accordingly, TGF-&beta;1, tryptase and other pro-inflammatory and immunosuppressive cytokines increased in the unresponsive patients. In conclusion, MC play a pivotal role in the resistance to GEM/NAB. A correlation between high level of circulating pro-inflammatory/ immunosuppressive cytokines and unresponsiveness was found in PDAC patients
    corecore