18 research outputs found

    Generalized Group Profiling for Content Customization

    Get PDF
    There is an ongoing debate on personalization, adapting results to the unique user exploiting a user's personal history, versus customization, adapting results to a group profile sharing one or more characteristics with the user at hand. Personal profiles are often sparse, due to cold start problems and the fact that users typically search for new items or information, necessitating to back-off to customization, but group profiles often suffer from accidental features brought in by the unique individual contributing to the group. In this paper we propose a generalized group profiling approach that teases apart the exact contribution of the individual user level and the "abstract" group level by extracting a latent model that captures all, and only, the essential features of the whole group. Our main findings are the followings. First, we propose an efficient way of group profiling which implicitly eliminates the general and specific features from users' models in a group and takes out the abstract model representing the whole group. Second, we employ the resulting models in the task of contextual suggestion. We analyse different grouping criteria and we find that group-based suggestions improve the customization. Third, we see that the granularity of groups affects the quality of group profiling. We observe that grouping approach should compromise between the level of customization and groups' size.Comment: Short paper (4 pages) published in proceedings of ACM SIGIR Conference on Human Information Interaction and Retrieval (CHIIR'16

    Share your Model instead of your Data: Privacy Preserving Mimic Learning for Ranking

    Get PDF
    Deep neural networks have become a primary tool for solving problems in many fields. They are also used for addressing information retrieval problems and show strong performance in several tasks. Training these models requires large, representative datasets and for most IR tasks, such data contains sensitive information from users. Privacy and confidentiality concerns prevent many data owners from sharing the data, thus today the research community can only benefit from research on large-scale datasets in a limited manner. In this paper, we discuss privacy preserving mimic learning, i.e., using predictions from a privacy preserving trained model instead of labels from the original sensitive training data as a supervision signal. We present the results of preliminary experiments in which we apply the idea of mimic learning and privacy preserving mimic learning for the task of document re-ranking as one of the core IR tasks. This research is a step toward laying the ground for enabling researchers from data-rich environments to share knowledge learned from actual users' data, which should facilitate research collaborations.Comment: SIGIR 2017 Workshop on Neural Information Retrieval (Neu-IR'17)}{}{August 7--11, 2017, Shinjuku, Tokyo, Japa

    Datasets for Evaluating Word Stability Metrics

    Full text link
    This dataset contains two evaluation sets for detecting semantic shifts and contrastive viewpoint summarization. It will be made available soon

    Quand des Non-Experts Recherchent des Textes Scientifiques: Rapport sur l’action CLEF 2023 SimpleText

    Full text link
    International audienceLe grand public a tendance à éviter les sources fiables telles que la littérature scientifique en raison de leur langage complexe et du manque de connaissances nécessaires. Au lieu de cela, il s’appuie sur des sources superficielles, trouvées sur internet ou dans les médias sociaux et qui sont pourtant souvent publiées pour des raisons commerciales ou politiques, plutôt que pour leur valeur informative. La simplification des textes peut-elle contribuer à supprimer certains de ces obstacles à l’accès ? Cet article présente l’action « CLEF 2023 SimpleText » qui aborde les défis techniques et d’évaluation de l’accès à l’information scientifique pour le grand public. Nous fournissons des données réutilisables et des critères de référence pour la simplification des textes scientifiques et encourageons les recherches visant à faciliter à la compréhension des textes complexes

    Quand des Non-Experts Recherchent des Textes Scientifiques: Rapport sur l’action CLEF 2023 SimpleText

    Full text link
    International audienceLe grand public a tendance à éviter les sources fiables telles que la littérature scientifique en raison de leur langage complexe et du manque de connaissances nécessaires. Au lieu de cela, il s’appuie sur des sources superficielles, trouvées sur internet ou dans les médias sociaux et qui sont pourtant souvent publiées pour des raisons commerciales ou politiques, plutôt que pour leur valeur informative. La simplification des textes peut-elle contribuer à supprimer certains de ces obstacles à l’accès ? Cet article présente l’action « CLEF 2023 SimpleText » qui aborde les défis techniques et d’évaluation de l’accès à l’information scientifique pour le grand public. Nous fournissons des données réutilisables et des critères de référence pour la simplification des textes scientifiques et encourageons les recherches visant à faciliter à la compréhension des textes complexes

    Quand des Non-Experts Recherchent des Textes Scientifiques: Rapport sur l’action CLEF 2023 SimpleText

    Full text link
    International audienceLe grand public a tendance à éviter les sources fiables telles que la littérature scientifique en raison de leur langage complexe et du manque de connaissances nécessaires. Au lieu de cela, il s’appuie sur des sources superficielles, trouvées sur internet ou dans les médias sociaux et qui sont pourtant souvent publiées pour des raisons commerciales ou politiques, plutôt que pour leur valeur informative. La simplification des textes peut-elle contribuer à supprimer certains de ces obstacles à l’accès ? Cet article présente l’action « CLEF 2023 SimpleText » qui aborde les défis techniques et d’évaluation de l’accès à l’information scientifique pour le grand public. Nous fournissons des données réutilisables et des critères de référence pour la simplification des textes scientifiques et encourageons les recherches visant à faciliter à la compréhension des textes complexes

    Telling How to Narrow it Down:Browsing Path Recommendation for Exploratory Search

    Get PDF
    Supporting exploratory search tasks with the help of structured data is an effective way to go beyond keyword search, as it provides an overview of the data, enables users to zoom in on their intent, and provides assistance during their navigation trails. However, finding a good starting point for a search episode in the given structure can still pose a considerable challenge, as users tend to be unfamiliar with exact, complex hierarchical structure. Thus, providing lookahead clues can be of great help and allow users to make better decisions on their search trajectory. In this paper, we investigate the behaviour of users when a recommendation engine is employed along with the browsing tool in an exploratory search system. We make use of an exploratory search system that facilitates browsing by mapping the data on a hierarchical structure. We designed and developed a path recommendation engine as a feature for this system, which given a text query, ranks different browsing paths in the hierarchy based on their likelihood of covering relevant documents. We conduct a user study comparing the baseline system with the featured system. Our main findings are as follows: We observe that, using the baseline system the users tend to explore the data in a breadth-firstlike approach by visiting different data points at the same level of abstraction to choose one of them to expand and go deeper. Conversely, with browsing path recommendation (BPR) as a feature, the users tend to drive their search in a more depth-first-like approach by quickly going deep into the data hierarchy. While the users still incline to explore different parts of the search space by using BPR, they are able to restrain or augment their search focus more quickly and access smaller but more promising regions of the data. Therefore, they can complete their tasks with less time and effort
    corecore