125 research outputs found
The effect of endurance training intensity on the expression of perlipin-A protein of visceral adipose tissue, serum glucose and insulin levels in STZ-induced diabetic rats
Background and aims: Changes in the expression of lipid droplet adipocyte proteins, such as prelipipin A (PLINA) cause alter lipolysis and insulin resistance. The aim of this study was to compare the three endurance training intensities (low, moderate and high) on the expression of PLINA protein in visceral adipose tissue, serum glucose and insulin levels in male diabetic Wistar rats.
Methods: 40 male Wistar rats were assigned to five groups (n=8) including diabetic group with low intensity endurance training, moderate intensity group, high intensity group, diabetic and healthy control groups. After induction of diabetic rats by injection of streptozotocin, endurance training was performed with different intensities for eight weeks, three sessions per week. The relative expression of PLINA protein was measured by western blot technique. One-way variance analysis and Tukey's post hoc test were used to determine the difference between the groups.
Results: The results showed that there was a significant difference between PLINA levels in healthy and diabetic control groups with endurance training groups (with low, moderate and high intensity) (P=0.018). These differences were between low intensity training and healthy control groups (P=0.033) and between diabetic and healthy control groups (P=0.020). Serum glucose and insulin levels were significantly different between the diabetic control and endurance training groups (low, moderate and high) (P=0.001). This difference was between high-intensity training group with low intensity training (P=0.046), diabetic control (P=0.001) and healthy control (P=0.011) groups.
Conclusion: Moderate and high intensity endurance training can compensate for the loss caused by diabetes in the expression of the PLINA protein and reduces serum levels of insulin and glucose in these mice. It seems that more intensity endurance training leads to more increase in PLINA expression in diabetic rats
De novo deletions and duplications of 17q25.3 cause susceptibility to cardiovascular malformations
BACKGROUND: Genomic disorders resulting from deletion or duplication of genomic segments are known to be an important cause of cardiovascular malformations (CVMs). In our previous study, we identified a unique individual with a de novo 17q25.3 deletion from a study of 714 individuals with CVM.
METHODS: To understand the contribution of this locus to cardiac malformations, we reviewed the data on 60,000 samples submitted for array comparative genomic hybridization (CGH) studies to Medical Genetics Laboratories at Baylor College of Medicine, and ascertained seven individuals with segmental aneusomy of 17q25. We validated our findings by studying another individual with a de novo submicroscopic deletion of this region from Cytogenetics Laboratory at Cincinnati Children's Hospital. Using bioinformatic analyses including protein-protein interaction network, human tissue expression patterns, haploinsufficiency scores, and other annotation systems, including a training set of 251 genes known to be linked to human cardiac disease, we constructed a pathogenicity score for cardiac phenotype for each of the 57 genes within the terminal 2.0 Mb of 17q25.3.
RESULTS: We found relatively high penetrance of cardiovascular defects (~60 %) with five deletions and three duplications, observed in eight unrelated individuals. Distinct cardiac phenotypes were present in four of these subjects with non-recurrent de novo deletions (range 0.08 Mb-1.4 Mb) in the subtelomeric region of 17q25.3. These included coarctation of the aorta (CoA), total anomalous pulmonary venous return (TAPVR), ventricular septal defect (VSD) and atrial septal defect (ASD). Amongst the three individuals with variable size duplications of this region, one had patent ductus arteriosus (PDA) at 8 months of age.
CONCLUSION: The distinct cardiac lesions observed in the affected patients and the bioinformatics analyses suggest that multiple genes may be plausible drivers of the cardiac phenotype within this gene-rich critical interval of 17q25.3
Shell-Controlled Photoluminescence in CdSe/CNT Nanohybrids
A new type of nanohybrids containing carbon nanotubes (CNTs) and CdSe quantum dots (QDs) was prepared using an electrostatic self-assembly method. The CdSe QDs were capped by various mercaptocarboxylic acids, including thioglycolic acid (TGA), dihydrolipoic acid (DHLA) and mercaptoundecanoic acid (MUA), which provide shell thicknesses of ~5.2, 10.6 and 15.2 Å, respectively. The surface-modified CdSe QDs are then self-assembled onto aridine orange-modified CNTs via electrostatic interaction to give CdSe/CNT nanohybrids. The photoluminescence (PL) efficiencies of the obtained nanohybrids increase significantly with the increase of the shell thickness, which is attributed to a distance-dependent photo-induced charge-transfer mechanism. This work demonstrates a simple mean for fine tuning the PL properties of the CdSe/CNT nanohybrids and gains new insights to the photo-induced charge transfer in such nanostructures
Wolff-Parkinson-White Syndrome: De Novo Variants and Evidence for Mutational Burden in Genes Associated with Atrial Fibrillation
BACKGROUND: Wolff-Parkinson-White (WPW) syndrome is a relatively common arrhythmia affecting ~1-3/1,000 individuals. Mutations in PRKAG2 have been described in rare patients in association with cardiomyopathy. However, the genetic basis of WPW in individuals with a structurally normal heart remains poorly understood. Sudden death due to atrial fibrillation (AF) can also occur in these individuals. Several studies have indicated that despite ablation of an accessory pathway, the risk of AF remains high in patients compared to general population.
METHODS: We applied exome sequencing in 305 subjects, including 65 trios, 80 singletons, and 6 multiple affected families. We used de novo analysis, candidate gene approach, and burden testing to explore the genetic contributions to WPW.
RESULTS: A heterozygous deleterious variant in PRKAG2 was identified in one subject, accounting for 0.6% (1/151) of the genetic basis of WPW in this study. Another individual with WPW and left ventricular hypertrophy carried a known pathogenic variant in MYH7. We found rare de novo variants in genes associated with arrhythmia and cardiomyopathy (ANK2, NEBL, PITX2, and PRDM16) in this cohort. There was an increased burden of rare deleterious variants (MAF ≤ 0.005) with CADD score ≥ 25 in genes linked to AF in cases compared to controls (P = .0023).
CONCLUSIONS: Our findings show an increased burden of rare deleterious variants in genes linked to AF in WPW syndrome, suggesting that genetic factors that determine the development of accessory pathways may be linked to an increased susceptibility of atrial muscle to AF in a subset of patients
Genetic architecture of laterality defects revealed by whole exome sequencing
Aberrant left-right patterning in the developing human embryo can lead to a broad spectrum of congenital malformations. The causes of most laterality defects are not known, with variants in established genes accounting for <20% of cases. We sought to characterize the genetic spectrum of these conditions by performing whole-exome sequencing of 323 unrelated laterality cases. We investigated the role of rare, predicted-damaging variation in 1726 putative laterality candidate genes derived from model organisms, pathway analyses, and human phenotypes. We also evaluated the contribution of homo/hemizygous exon deletions and gene-based burden of rare variation. A total of 28 candidate variants (26 rare predicted-damaging variants and 2 hemizygous deletions) were identified, including variants in genes known to cause heterotaxy and primary ciliary dyskinesia (ACVR2B, NODAL, ZIC3, DNAI1, DNAH5, HYDIN, MMP21), and genes without a human phenotype association, but with prior evidence for a role in embryonic laterality or cardiac development. Sanger validation of the latter variants in probands and their parents revealed no de novo variants, but apparent transmitted heterozygous (ROCK2, ISL1, SMAD2), and hemizygous (RAI2, RIPPLY1) variant patterns. Collectively, these variants account for 7.1% of our study subjects. We also observe evidence for an excess burden of rare, predicted loss-of-function variation in PXDNL and BMS1- two genes relevant to the broader laterality phenotype. These findings highlight potential new genes in the development of laterality defects, and suggest extensive locus heterogeneity and complex genetic models in this class of birth defects
Electrocatalytic performance of SiO2-SWCNT nanocomposites prepared by electroassisted deposition
“The final publication is available at Springer via http://dx.doi.org/10.1007/s12678-013-0144-3”Composite materials made of porous SiO2 matrices filled with single-walled carbon nanotubes (SWCNTs) were deposited on electrodes by an electroassisted deposition method. The synthesized materials were characterized by several techniques, showing that porous silica prevents the aggregation of SWCNT on the electrodes, as could be observed by transmission electron microscopy and Raman spectroscopy. Different redox probes were employed to test their electrochemical sensing properties. The silica layer allows the permeation of the redox probes to the electrode surface and improves the electrochemical reversibility indicating an electrocatalytic effect by the incorporation of dispersed SWCNT into the silica films.This work was financed by the following research projects: MAT2010-15273 of the Spanish Ministerio de Economia y Competitividad and FEDER, PROMETEO/2013/038 of the GV, and CIVP16A1821 of the Fundacion Ramon Areces. Alonso Gamero-Quijano and David Salinas-Torres acknowledge Generalitat Valenciana (Santiago Grisolia Program) and Ministerio de Economia y Competitividad, respectively, for the funding of their research fellowships.Gamero-Quijano, A.; Huerta, F.; Salinas-Torres, D.; Morallón, E.; Montilla, F. (2013). Electrocatalytic performance of SiO2-SWCNT nanocomposites prepared by electroassisted deposition. Electrocatalysis. 4(4):259-266. https://doi.org/10.1007/s12678-013-0144-3S25926644P. Alivisatos, Nat. Biotechnol. 22, 47 (2004)S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)D.W. Schaefer, R.S. Justice, Macromolecules 40, 8501 (2007)M. Endo, M.S. Strano, P.M. Ajayan, Carbon Nanotubes 111, 13 (2008)C.E. Banks, R.G. Compton, Analyst 131, 15 (2006)R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787 (2002)Y.H. Lin, F. Lu, Y. Tu, Z.F. Ren, Nano Letters 4, 191 (2004)B.R. Azamian, J.J. Davis, K.S. Coleman, C.B. Bagshaw, M.L.H. Green, J. Am. Chem. Soc. 124, 12664 (2002)W. Yang, K. Ratinac, S. Ringer, P. Thordarson, J.G. Gooding, F. Braet, Angew. Chem. Int. Ed. 49, 2114 (2010)C.E. Banks, R.G. Compton, Analyst 130, 1232 (2005)L. Mazurenko, M. Etienne, O. Tananaiko, V. Zaitsev, A. Walcarius, Electrochim. Acta 83, 359 (2012)J.M.P. Paloma Yáñez-Sedeño, J. Riu, F.X. Rius, TrAC Trends in Analytical Chemistry 29, 939 (2010)Z.J. Wang, M. Etienne, S. Poller, W. Schuhmann, G.W. Kohring, V. Mamane, A. Walcarius, Electroanalysis 24, 376 (2012)R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R. Yerushalmi-Rozen, Nano Letters 2, 25 (2002)C. Park, Z. Ounaies, K.A. Watson, R.E. Crooks, J. Smith, S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison, T.L.S. Clair, Chem. Phys. Lett. 364, 303 (2002)O. Matarredona, H. Rhoads, Z.R. Li, J.H. Harwell, L. Balzano, D.E. Resasco, Journal of Physical Chemistry B 107, 13357 (2003)L. Vaisman, H. Wagner, G. Marom, Advances in Colloid and Interface Science 128, 37 (2006)Y.C. Xing, Journal of Physical Chemistry B 108, 19255 (2004)J.J. Liang, Y. Huang, L. Zhang, Y. Wang, Y.F. Ma, T.Y. Guo, Y.S. Chen, Adv. Funct. Mater. 19, 2297 (2009)D. Salinas-Torres, F. Huerta, F. Montilla, E. Morallón, Electrochim. Acta 56, 2464 (2011)Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105 (1998)W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274, 1701 (1996)M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Nature 388, 52 (1997)R. Toledano, D. Mandler, Chem. Mater. 22, 3943 (2010)J.H. Rouse, Langmuir 21, 1055 (2005)X.B. Yan, B.K. Tay, Y. Yang, Journal of Physical Chemistry B 110, 25844 (2006)J. Lim, P. Malati, F. Bonet, B. Dunn, J. Electrochem. Soc. 154, A140 (2007)L.D. Zhu, C.Y. Tian, J.L. Zhai, R.L. Yang, Sensors and Actuators B-Chemical 125, 254 (2007)F. Montilla, M.A. Cotarelo, E. Morallón, J. Mater. Chem. 19, 305 (2009)D. Salinas-Torres, F. Montilla, F. Huerta, E. Morallón, Electrochim. Acta 56, 3620 (2011)T. Dobbins, R. Chevious, Y. Lvov, Polymers 3, 942 (2011)R. Esquembre, J.A. Poveda, C.R. Mateo, Journal of Physical Chemistry B 113, 7534 (2009)M.L. Ferrer, R. Esquembre, I. Ortega, C.R. Mateo, F. del Monte, Chem. Mater. 18, 554 (2006)M.J. O'Connell, S. Sivaram, S.K. Doorn, Physical Review B 69, 235415 (2004)C. Domingo, G. Santoro, Opt. Pura Apl 40, 175 (2007)M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Physics Reports 409, 47 (2005)R.L. McCreery, Chem. Rev. 108, 2646 (2008)C.G. Zoski, in Handbook of Electrochemistry, 1st ed (Elsevier, Amsterdam, 2007
Exome sequencing reveals novel variants and unique allelic spectrum for hearing impairment in Filipino cochlear implantees
Genetic hearing impairment is mostly nonsyndromic (80%), and >6,000 causal variants in >100 genes have been identified. Generally in hearing-impaired patients of Asian descent, GJB2 variants are most common (36%), followed by variants in SLC26A4 (MIM 605646), MYO15A (MIM 602666) and CDH23 (MIM 605516). Here we report seven novel variants in Filipino cochlear implantees, suggesting that the allelic spectrum for non-/syndromic hearing impairment in Filipinos is unique
Neurodevelopmental and other phenotypes recurrently associated with heterozygous BAZ2B loss-of-function variants
The bromodomain adjacent to zinc finger 2B (BAZ2B) gene encodes a chromatin remodeling protein that has been shown to perform a variety of regulatory functions. It has been proposed that loss of BAZ2B function is associated with neurodevelopmental phenotypes, and some recurrent structural birth defects and dysmorphic features have been documented among individuals carrying heterozygous loss-of-function BAZ2B variants. However, additional evidence is needed to confirm that these phenotypes are attributable to BAZ2B deficiency. Here, we report 10 unrelated individuals with heterozygous deletions, stop-gain, frameshift, missense, splice junction, indel, and start-loss variants affecting BAZ2B. These included a paternal intragenic deletion and a maternal frameshift variant that were inherited from mildly affected or asymptomatic parents. The analysis of molecular and clinical data from this cohort, and that of individuals previously reported, suggests that BAZ2B haploinsufficiency causes an autosomal dominant neurodevelopmental syndrome that is incompletely penetrant. The phenotypes most commonly seen in association with loss of BAZ2B function include developmental delay, intellectual disability, autism spectrum disorder, speech delay-with some affected individuals being non-verbal-behavioral abnormalities, seizures, vision-related issues, congenital heart defects, poor fetal growth, and an indistinct pattern of dysmorphic features in which epicanthal folds and small ears are particularly common.Genetics of disease, diagnosis and treatmen
- …