59 research outputs found
Simulation of instability at transition energy with a new impedance model for CERN PS
Instabilities driven by the transverse impedance are proven to be one of the limitations for the high intensity reach of the CERN PS. Since several years, fast single bunch vertical instability at transition energy has been observed with the high intensity bunch serving the neutron Time-of-Flight facility (n-ToF). In order to better understand the instability mechanism, a dedicated measurement campaign took place. The results were compared with macro-particle simulations with PyHEADTAIL based on the new impedance model developed for the PS. Instability threshold and growth rate for different longitudinal emittances and beam intensities were studied
Study of Beam Losses at Transition Crossing at the CERN PS
A series of studies has been carried out to understand and alleviate the beam losses in the CERN PS Proton Synchrotron. Losses appear especially at transition crossing during the pulsing of special quadrupoles used to create a gamma jump scheme. However, this causes a large optics and orbit distortion. After a brief summary of the gamma jump scheme at the PS, experimental and simulation results of the loss and reduction studies are presented
Study of Beam Losses at Injection in the CERN Proton Synchrotron
The maximum intensity the CERN PS has to deliver is continuously increasing. In particular, during the next years, one of the most intense beams ever produced in the PS, with up to 3000 1010 proton per pulse, should be delivered on a regular basis for the CNGS physics program. It is now known that the existing radiation shielding of the PS in some places is too weak and constitutes a major limitation due to large beam losses in specific locations of the machine. This is the case for the injection region: losses appear on the injection septum when the beam is injected in the ring and during the first turn, due to an optical mismatch between the injection line and the PS. This paper presents the experimental studies and the simulations which have been made to understand the loss pattern in the injection region. Possible solutions to reduce the beam losses will be described, including the computation of a new injection optics
Design of beam optics for the Future Circular Collider e+e- -collider rings
A beam optics scheme has been designed for the Future Circular Collider-e+e-
(FCC-ee). The main characteristics of the design are: beam energy 45 to 175
GeV, 100 km circumference with two interaction points (IPs) per ring,
horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [1]
with local chromaticity correction. The crab-waist scheme is implemented within
the local chromaticity correction system without additional sextupoles, by
reducing the strength of one of the two sextupoles for vertical chromatic
correction at each side of the IP. So-called "tapering" of the magnets is
applied, which scales all fields of the magnets according to the local beam
energy to compensate for the effect of synchrotron radiation (SR) loss along
the ring. An asymmetric layout near the interaction region reduces the critical
energy of SR photons on the incoming side of the IP to values below 100 keV,
while matching the geometry to the beam line of the FCC proton collider
(FCC-hh) [2] as closely as possible. Sufficient transverse/longitudinal dynamic
aperture (DA) has been obtained, including major dynamical effects, to assure
an adequate beam lifetime in the presence of beamstrahlung and top-up
injection. In particular, a momentum acceptance larger than +/-2% has been
obtained, which is better than the momentum acceptance of typical collider
rings by about a factor of 2. The effects of the detector solenoids including
their compensation elements are taken into account as well as synchrotron
radiation in all magnets. The optics presented in this paper is a step toward a
full conceptual design for the collider. A number of issues have been
identified for further study
The FCC-ee study: Progress and challenges
The FCC (Future Circular Collider) study represents a vision for the next
large project in high energy physics, comprising an 80-100 km tunnel that can
house a future 100 TeV hadron collider. The study also includes a high
luminosity e+e- collider operating in the centre-of-mass energy range of 90-350
GeV as a possible intermediate step, the FCC-ee. The FCC-ee aims at definitive
electro-weak precision measurements of the Z, W, H and top particles, and
search for rare phenomena. Although FCC-ee is based on known technology, the
goal performance in luminosity and energy calibration make it quite
challenging. During 2014 the study went through an exploration phase. The study
has now entered its second year and the aim is to produce a conceptual design
report during the next three to four years. We here report on progress since
the last IPAC conference.Comment: Poster presented at IPAC15,Richmond, VA, USA, May 201
Reaching the poor with health interventions: Programme-incidence analysis of seven randomised trials of women's groups to reduce newborn mortality in Asia and Africa
Background Efforts to end preventable newborn deaths will fail if the poor are not reached with effective interventions. To understand what works to reach vulnerable groups, we describe and explain the uptake of a highly effective community-based newborn health intervention across social strata in Asia and Africa. Methods We conducted a secondary analysis of seven randomised trials of participatory women's groups to reduce newborn mortality in India, Bangladesh, Nepal and Malawi. We analysed data on 70 574 pregnancies. Socioeconomic and sociodemographic differences in group attendance were tested using logistic regression. Qualitative data were collected at each trial site (225 focus groups, 20 interviews) to understand our results. Results Socioeconomic differences in women's group attendance were small, except for occasional lower attendance by elites. Sociodemographic differences were large, with lower attendance by young primigravid women in African as well as in South Asian sites. The intervention was considered relevant and interesting to all socioeconomic groups. Local facilitators ensured inclusion of poorer women. Embarrassment and family constraints on movement outside the home restricted attendance among primigravid women. Reproductive health discussions were perceived as inappropriate for them. Conclusions Community-based women's groups can help to reach every newborn with effective interventions. Equitable intervention uptake is enhanced when facilitators actively encourage all women to attend, organise meetings at the participants' convenience and use approaches that are easily understandable for the less educated. Focused efforts to include primigravid women are necessary, working with families and communities to decrease social taboos
Scaling up community mobilisation through women's groups for maternal and neonatal health: experiences from rural Bangladesh
Background: Program coverage is likely to be an important determinant of the effectiveness of community interventions to reduce neonatal mortality. Rigorous examination and documentation of methods to scale-up interventions and measure coverage are scarce, however. To address this knowledge gap, this paper describes the process and measurement of scaling-up coverage of a community mobilisation intervention for maternal, child and neonatal health in rural Bangladesh and critiques this real-life experience in relation to available literature on scaling-up.Methods: Scale-up activities took place in nine unions in rural Bangladesh. Recruitment and training of those who deliver the intervention, communication and engagement with the community and other stakeholders and active dissemination of intervention activities are described. Process evaluation and population survey data are presented and used to measure coverage and the success of scale-up.Results: The intervention was scaled-up from 162 women's groups to 810, representing a five-fold increase in population coverage. The proportion of women of reproductive age and pregnant women who were engaged in the intervention increased from 9% and 3%, respectively, to 23% and 29%.Conclusions: Examination and documentation of how scaling-up was successfully initiated, led, managed and monitored in rural Bangladesh provide a deeper knowledge base and valuable lessons.Strong operational capabilities and institutional knowledge o
Impact of a participatory intervention with women's groups on psychological distress among mothers in rural Bangladesh: Secondary analysis of a cluster-randomised controlled trial
Background: Perinatal common mental disorders (PCMDs) are a major cause of disability among women and disproportionately affect lower income countries. Interventions to address PCMDs are urgently needed in these settings, and group-based and peer-led approaches are potential strategies to increase access to mental health interventions. Participator
Recommended from our members
HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4
Abstract: In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
- âŠ