66 research outputs found

    Database Supported Bacnet Data Acquisition System for Building Energy Diagnostics

    Get PDF
    This paper reports a tool that can be used to acquire and store the BACnet (A Data Communication Protocol for Building Automation and Control Networks) data for the purpose of building energy system Fault Detection and Diagnostics (FDD). Building Automation Control (BAC) systems have become a common practice in recently constructed buildings in the United States. Although building operational data could readily be collected for various analysis purposes, there is still a debate in building community which or what FDD method is better in terms of performance matrix, such as false alarm rate and training data requirement, etc. Therefore, from the user's perspective, it is potentially beneficial to try out different FDD methods before the deployment, or even develop a dedicated FDD method in a specific case. This is the motivation for development of the BACnet data storage system discussed in this paper, which could then be used together with BACnet data acquisition module in an open source Building Control Virtual Test Bed (BCVTB) environment [2]. This paper discusses (1) Relational database schema development for the purpose of storing building operational data and FDD analysis data (2) Development of the connector in BCVTB that enables the transition from the BACnet module to the database module and (3)Testing of the integrated system in a real building. The relational database is intended to be general and detailed enough so that it can be applied to different buildings and projects with various complexity without any major structure change. The BACnet-reader to database connector enables seamless data flow from commercial BACnet system to user's customized workstation. The integrated system enables users to analyze building operational data in an effective and efficient way, which helps achieve automated FDD in buildings

    Analysis Methodology for Large Organizations' Investments in Energy Retrofit of Buildings

    Get PDF
    This paper presents a formal methodology that supports large organizations' investments in energy retrofit of buildings. The methodology is a scalable modeling approach based on normative models and Bayesian calibration. Normative models are a light- weight quasi-steady state energy models, which makes them scalable to large sets of buildings due to highly enhanced modeling efficiency. Then, Bayesian approach calibrates normative models such that calibrated models quantify uncertainty in the model while representing a building as operated. Calibrated models can further incorporate additional uncertainty from ECMs, and provide information about underperforming risks of ECMs. This paper illustrates the proposed retrofit analysis process through a case study, and demonstrates its feasibility to support large-scale retrofit decisions under uncertainty in the context of the ESCO industry

    The impact of future climate scenarios on decision making in building performance simulation: a case study

    Get PDF
    Expected climate change may turn into a key challenge for building designers in the 21st century [Homes et al. 2007].In response to this challenge simulation packages have started to provide future climate scenarios to predict the energy demands and thermal comfort in buildings. The need to make predictions for climate change scenarios is becoming increasingly important.This paper describes the integration of climate change scenarios in one of the building performance simulation tools, i.e. VA114, which is used extensively in the Netherlands. Based on the existing traditional reference year "De Bilt 64/65", NEN 5060:2008 released a new norm that introduces four new climate files for different types of climate adjustments. KNMI on the other hand assembled four different future scenarios for the expected climate change. The climate files from the NEN and the KNMI future scenarios have been combined in a future climate data analysis for usage within the targeted simulation software VA114. The paper describes a case study focusing on the impact that a climate scenario may have on a concrete design decision. The case study involves two HVAC system designs: (1) a conventional cooling/heating system and (2) a heating/ cooling storage system. Both options are simulated and compared. The impact of climate change is shown on energy use and thermal comfort. It is then shown how the climate scenarios (and their inherent uncertainties) impact the uncertainty in the outcomes and how these outcomes influence the choice between the design options. The conclusions of the paper highlight the relevance of different (uncertain) climate scenarios and the role they play in design decision making

    A functional architecture for an e-Engineering hub

    Get PDF
    Many Information Technology (IT) tools now exist to support collaborative working between engineering organisations. These often address operational issues rather than tactical or strategic issues. In particular, there are no effective tools for collaborative project planning between project partners. An electronic engineering hub (e-Hub) is considered useful in this regard. This paper presents the functional architecture of the e- Hub – a major research result of the EU funded e-HUBs project (e-Engineering enabled by Holonomic and Universal Broker Services). The e-HUBs project developed a universal collaboration platform for engineering outsourcing with focus on supporting collaborative project planning process. The e-Hub offers an extended set of functions to engineering service providers (mostly small and medium-sized enterprises) such as application hosting and definition and development of collaborative engineering workflows. The paper discusses the theoretical background and the supporting technologies for the development of the functional architecture and presents the deployment of the engineering e-Hub prototype in a construction scenario

    An evaluation of energy efficiency measures in a Turkish campus building for thermal comfort and economic risk

    Get PDF
    As new and retrofitted Turkish buildings adopt stateof-the-art energy efficiency measures, hidden risks associated with compromised thermal comfort and disappointing returns on investment could go unnoticed unless a building is subjected to an uncertainty and risk analysis. Standard deterministic predictions are not sufficient, as they do not capture the effects of uncertainty and variability with regard to local microclimate conditions, physical parameters, and discrepancies in the model formulations, also known as “model form uncertainties”. In this paper, we analyze the impact of uncertainty on the performance of a Turkish campus building. We examine the risk that an energy efficient design that is accepted because of the positive results of a conventional energy simulation, causes unacceptable discomfort and unsatisfactory returns on investment. The results of a comprehensive uncertainty analysis shows that these risks exist in certain areas and not in others. The predicted annual output of PV panels is relatively stable with only minor variability, which justifies the investment in Istanbul. Same with shading devices, which lead to a satisfactory internal rate of return under uncertainty. However, with regard to comfort we find that risks could be substantial. We find that relying completely on occupants opening and closing windows for fresh air with fan coil units maintaining the indoor temperature may lead to an insufficient supply of outdoor air for occupants and a substantial risk of overheating. Overall, the results of the analysis demonstrate that understanding risks is in some cases crucial to make an informed design decision regarding various energy saving design strategies.NSF ; Georgia Institute of Technology ; European Commission ; CEE

    Métodos de aplicação da simulação computacional em edifícios naturalmente ventilados no clima quente e úmido

    Get PDF
    A ventilação natural é o principal recurso passivo para a obtenção do conforto térmico em climas quentes e úmidos, reduzindo também o consumo energético com condicionamento artificial. Entretanto, arquitetos fazem restrição a seu uso por não haver garantias de solução dos problemas de conforto térmico, quando comparada aos sistemas artificiais. Nesse sentido, decidiu-se investigar formas de prever o comportamento da ventilação natural em edifícios através de ferramentas de simulação computacional, visando apoiar a tomada de decisão no projeto de arquitetura. O objeto de estudo é o edifício pré-fabricado, do tipo galpão, considerado como típico na cidade de Natal, RN. Utilizaram-se um programa de dinâmica de fluidos computacional (CFD) e um de simulação térmica e energética de edificações. O artigo tem como foco a discussão dos procedimentos necessários para viabilizar as análises da ventilação, indicando como o método teve de ser adequado à complexidade de sucessivas abordagens, resultando em simplificações e incertezas de resultados. Para exemplificar a abordagem apresentam-se alguns resultados de simulações. Ao final, as limitações e potencialidades do método são discutidas com base nas características dos códigos de simulações utilizados, das condições de simulação e da representatividade dos modelos
    corecore