3,244 research outputs found
Quantum Pumping with Ultracold Atoms on Microchips: Fermions versus Bosons
We present a design for simulating quantum pumping of electrons in a
mesoscopic circuit with ultra-cold atoms in a micro-magnetic chip trap. We
calculate theoretical results for quantum pumping of both bosons and fermions,
identifying differences and common features, including geometric behavior and
resonance transmission. We analyze the feasibility of experiments with bosonic
Rb and fermionic K atoms with an emphasis on reliable atomic
current measurements.Comment: 4 pages; 4 figure
Lattice Gauge Fixing as Quenching and the Violation of Spectral Positivity
Lattice Landau gauge and other related lattice gauge fixing schemes are known
to violate spectral positivity. The most direct sign of the violation is the
rise of the effective mass as a function of distance. The origin of this
phenomenon lies in the quenched character of the auxiliary field used to
implement lattice gauge fixing, and is similar to quenched QCD in this respect.
This is best studied using the PJLZ formalism, leading to a class of covariant
gauges similar to the one-parameter class of covariant gauges commonly used in
continuum gauge theories. Soluble models are used to illustrate the origin of
the violation of spectral positivity. The phase diagram of the lattice theory,
as a function of the gauge coupling and the gauge-fixing parameter
, is similar to that of the unquenched theory, a Higgs model of a type
first studied by Fradkin and Shenker. The gluon propagator is interpreted as
yielding bound states in the confined phase, and a mixture of fundamental
particles in the Higgs phase, but lattice simulation shows the two phases are
connected. Gauge field propagators from the simulation of an SU(2) lattice
gauge theory on a lattice are well described by a quenched mass-mixing
model. The mass of the lightest state, which we interpret as the gluon mass,
appears to be independent of for sufficiently large .Comment: 28 pages, 14 figures, RevTeX
Polyhedral approximations of strictly convex compacta
We consider polyhedral approximations of strictly convex compacta in finite
dimensional Euclidean spaces (such compacta are also uniformly convex). We
obtain the best possible estimates for errors of considered approximations in
the Hausdorff metric. We also obtain new estimates of an approximate algorithm
for finding the convex hulls
Flow generated by radial flow impellers: PIV measurements and CFD simulations
Particle image velocimetry (PIV) and computational fluid dynamics (CFD) have been used to
investigate the single phase and gas-liquid flow generated by a Scaba SRGT turbine. The key
details of the trailing vortices, the turbulent flow around the impeller blades and the
accumulation of gas have been studied by using PIV measurements and CFD simulations.
Both the experimental and numerical results show that the flow and the trailing vortices are
not altered significantly upon gassing. The simulated results are generally in good agreement
with the experimental findings. The CFD simulations also show that only small low-pressure
regions exist behind the blades of the Scaba turbine compared with the very large lowpressure
zones formed by the Rushton turbine. These results enable better understanding of
the improved performance of the Scaba turbine for gas-liquid dispersions compared with the
Rushton turbine
Light hadrons with improved staggered quarks: approaching the continuum limit
We have extended our program of QCD simulations with an improved
Kogut-Susskind quark action to a smaller lattice spacing, approximately 0.09
fm. Also, the simulations with a approximately 0.12 fm have been extended to
smaller quark masses. In this paper we describe the new simulations and
computations of the static quark potential and light hadron spectrum. These
results give information about the remaining dependences on the lattice
spacing. We examine the dependence of computed quantities on the spatial size
of the lattice, on the numerical precision in the computations, and on the step
size used in the numerical integrations. We examine the effects of
autocorrelations in "simulation time" on the potential and spectrum. We see
effects of decays, or coupling to two-meson states, in the 0++, 1+, and 0-
meson propagators, and we make a preliminary mass computation for a radially
excited 0- meson.Comment: 43 pages, 16 figure
The Orphan Nuclear Estrogen Receptor–Related Receptor α (Errα) Is Expressed Throughout Osteoblast Differentiation and Regulates Bone Formation in Vitro
The orphan nuclear estrogen receptor–related receptor α (ERRα), is expressed by many cell types, but is very highly expressed by osteoblastic cells in which it transactivates at least one osteoblast-associated gene, osteopontin. To study the putative involvement of ERRα in bone, we first assessed its expression in rat calvaria (RC) in vivo and in RC cells in vitro. ERRα mRNA and protein were expressed at all developmental stages from early osteoprogenitors to bone-forming osteoblasts, but protein was most abundant in mature cuboidal osteoblasts. To assess a functional role for ERRα in osteoblast differentiation and bone formation, we blocked its expression by antisense oligonucleotides in either proliferating or differentiating RC cell cultures and found inhibition of cell growth and a proliferation-independent inhibition of differentiation. On the other hand, ERRα overexpression in RC cells increased differentiation and maturation of progenitors to mature bone-forming cells. Our findings show that ERRα is highly expressed throughout the osteoblast developmental sequence and plays a physiological role in differentiation and bone formation at both proliferation and differentiation stages. In addition, we found that manipulation of receptor levels in the absence of known ligand is a fruitful approach for functional analysis of this orphan receptor and identification of potential target genes
- …