2 research outputs found
Macrocyclization of dienes under confinement with cationic tungsten imido/oxo alkylidene N‐heterocyclic carbene complexes
Macrocyclization reactions are still challenging due to competing oligomerization, which requires the use of small substrate concentrations. Here, the cationic tungsten imido and tungsten oxo alkylidene N-heterocyclic carbene complexes [[W(N-2,6-Cl2-C6H3)(CHCMe2Ph(OC6F5)(pivalonitrile)(IMes)+ B(ArF)4-] (W1) and [W(O (CHCMe2Ph(OCMe(CF3)2)(IMes)(CH3CN)+ B(ArF)4-] (W2) (IMes=1,3-dimesitylimidazol-2-ylidene; B(ArF)4-=tetrakis(3,5-bis(trifluoromethyl)phenyl borate) have been immobilized inside the pores of ordered mesoporous silica (OMS) with pore diameters of 3.3 and 6.8 nm, respectively, using a pore-selective immobilization protocol. X-ray absorption spectroscopy of W1@OMS showed that even though the catalyst structure is contracted due to confinement by the mesopores, both the oxidation state and structure of the catalyst stayed intact upon immobilization. Catalytic testing with four differently sized α,ω-dienes revealed a dramatically increased macrocyclization (MC) and Z-selectivity of the supported catalysts compared to the homogenous progenitors, allowing high substrate concentrations of 25 mM. With the supported complexes, a maximum increase in MC-selectivity from 27 to 81 % and in Z-selectivity from 17 to 34 % was achieved. In general, smaller mesopores exhibited a stronger confinement effect. A comparison of the two supported tungsten-based catalysts showed that W1@OMS possesses a higher MC-selectivity, while W2@OMS exhibits a higher Z-selectivity which can be rationalized by the structures of the catalysts.Deutsche Forschungsgemeinschaft DFGEuropean Regional Development Fun
Rh(I)/(III)‐N‐Heterocyclic Carbene Complexes: Effect of Steric Confinement Upon Immobilization on Regio‐ and Stereoselectivity in the Hydrosilylation of Alkynes
Rh(I) NHC and Rh(III) Cp* NHC complexes (Cp*=pentamethylcyclopentadienyl, NHC=N-heterocyclic carbene=pyrid-2-ylimidazol-2-ylidene (Py−Im), thiophen-2-ylimidazol-2-ylidene) are presented. Selected catalysts were selectively immobilized inside the mesopores of SBA-15 with average pore diameters of 5.0 and 6.2 nm. Together with their homogenous progenitors, the immobilized catalysts were used in the hydrosilylation of terminal alkynes. For aromatic alkynes, both the neutral and cationic Rh(I) complexes showed excellent reactivity with exclusive formation of the β(E)-isomer. For aliphatic alkynes, however, selectivity of the Rh(I) complexes was low. By contrast, the neutral and cationic Rh(III) Cp* NHC complexes proved to be highly regio- and stereoselective catalysts, allowing for the formation of the thermodynamically less stable β-(Z)-vinylsilane isomers at room temperature. Notably, the SBA-15 immobilized Rh(I) catalysts, in which the pore walls provide an additional confinement, showed excellent β-(Z)-selectivity in the hydrosilylation of aliphatic alkynes, too. Also, in the case of 4-aminophenylacetylene, selective formation of the β(Z)-isomer was observed with a neutral SBA-15 supported Rh(III) Cp* NHC complex but not with its homogenous counterpart. These are the first examples of high β(Z)-selectivity in the hydrosilylation of alkynes by confinement generated upon immobilization inside mesoporous silica