16 research outputs found

    On Strong Centerpoints

    Full text link
    Let PP be a set of nn points in Rd\mathbb{R}^d and F\mathcal{F} be a family of geometric objects. We call a point xPx \in P a strong centerpoint of PP w.r.t F\mathcal{F} if xx is contained in all FFF \in \mathcal{F} that contains more than cncn points from PP, where cc is a fixed constant. A strong centerpoint does not exist even when F\mathcal{F} is the family of halfspaces in the plane. We prove the existence of strong centerpoints with exact constants for convex polytopes defined by a fixed set of orientations. We also prove the existence of strong centerpoints for abstract set systems with bounded intersection

    Small Strong Epsilon Nets

    Full text link
    Let P be a set of n points in Rd\mathbb{R}^d. A point x is said to be a centerpoint of P if x is contained in every convex object that contains more than dnd+1dn\over d+1 points of P. We call a point x a strong centerpoint for a family of objects C\mathcal{C} if xPx \in P is contained in every object CCC \in \mathcal{C} that contains more than a constant fraction of points of P. A strong centerpoint does not exist even for halfspaces in R2\mathbb{R}^2. We prove that a strong centerpoint exists for axis-parallel boxes in Rd\mathbb{R}^d and give exact bounds. We then extend this to small strong ϵ\epsilon-nets in the plane and prove upper and lower bounds for ϵiS\epsilon_i^\mathcal{S} where S\mathcal{S} is the family of axis-parallel rectangles, halfspaces and disks. Here ϵiS\epsilon_i^\mathcal{S} represents the smallest real number in [0,1][0,1] such that there exists an ϵiS\epsilon_i^\mathcal{S}-net of size i with respect to S\mathcal{S}.Comment: 19 pages, 12 figure

    Selection Lemmas for various geometric objects

    Full text link
    Selection lemmas are classical results in discrete geometry that have been well studied and have applications in many geometric problems like weak epsilon nets and slimming Delaunay triangulations. Selection lemma type results typically show that there exists a point that is contained in many objects that are induced (spanned) by an underlying point set. In the first selection lemma, we consider the set of all the objects induced (spanned) by a point set PP. This question has been widely explored for simplices in Rd\mathbb{R}^d, with tight bounds in R2\mathbb{R}^2. In our paper, we prove first selection lemma for other classes of geometric objects. We also consider the strong variant of this problem where we add the constraint that the piercing point comes from PP. We prove an exact result on the strong and the weak variant of the first selection lemma for axis-parallel rectangles, special subclasses of axis-parallel rectangles like quadrants and slabs, disks (for centrally symmetric point sets). We also show non-trivial bounds on the first selection lemma for axis-parallel boxes and hyperspheres in Rd\mathbb{R}^d. In the second selection lemma, we consider an arbitrary mm sized subset of the set of all objects induced by PP. We study this problem for axis-parallel rectangles and show that there exists an point in the plane that is contained in m324n4\frac{m^3}{24n^4} rectangles. This is an improvement over the previous bound by Smorodinsky and Sharir when mm is almost quadratic

    Polynomial Kernels for Generalized Domination Problems

    Full text link
    In this paper, we study the parameterized complexity of a generalized domination problem called the [σ,ρ{\sigma}, {\rho}] Dominating Set problem. This problem generalizes a large number of problems including the Minimum Dominating Set problem and its many variants. The parameterized complexity of the [σ,ρ{\sigma}, {\rho}] Dominating Set problem parameterized by treewidth is well studied. Here the properties of the sets σ{\sigma} and ρ{\rho} that make the problem tractable are identified [1]. We consider a larger parameter and investigate the existence of polynomial sized kernels. When σ{\sigma} and ρ{\rho} are finite, we identify the exact condition when the [σ,ρ{\sigma}, {\rho}] Dominating Set problem parameterized by vertex cover admits polynomial kernels. Our lower and upper bound results can also be extended to more general conditions and provably smaller parameters as well.Comment: 19 pages, 6 figure

    Exact Algorithms for Terrain Guarding

    Get PDF
    Given a 1.5-dimensional terrain T, also known as an x-monotone polygonal chain, the Terrain Guarding problem seeks a set of points of minimum size on T that guards all of the points on T. Here, we say that a point p guards a point q if no point of the line segment pq is strictly below T. The Terrain Guarding problem has been extensively studied for over 20 years. In 2005 it was already established that this problem admits a constant-factor approximation algorithm [SODA 2005]. However, only in 2010 King and Krohn [SODA 2010] finally showed that Terrain Guarding is NP-hard. In spite of the remarkable developments in approximation algorithms for Terrain Guarding, next to nothing is known about its parameterized complexity. In particular, the most intriguing open questions in this direction ask whether it admits a subexponential-time algorithm and whether it is fixed-parameter tractable. In this paper, we answer the first question affirmatively by developing an n^O(sqrt{k})-time algorithm for both Discrete Terrain Guarding and Continuous Terrain Guarding. We also make non-trivial progress with respect to the second question: we show that Discrete Orthogonal Terrain Guarding, a well-studied special case of Terrain Guarding, is fixed-parameter tractable

    Small strong epsilon nets

    No full text
    Let P be a set of n points in R-d. A point x is said to be a centerpoint of P if x is contained in every convex object that contains more than dn/d+1 points of P. We call a point x a strong centerpoint for a family of objects C if x is an element of P is contained in every object C is an element of C that contains more than a constant fraction of points of P. A strong centerpoint does not exist even for halfspaces in R-2. We prove that a strong centerpoint exists for axis-parallel boxes in Rd and give exact bounds. We then extend this to small strong epsilon-nets in the plane. Let epsilon(S)(i) represent the smallest real number in 0, 1] such that there exists an epsilon(S)(i)-net of size i with respect to S. We prove upper and lower bounds for epsilon(S)(i) where S is the family of axis-parallel rectangles, halfspaces and disks. (C) 2014 Elsevier B.V. All rights reserved
    corecore