16 research outputs found
On Strong Centerpoints
Let be a set of points in and be a
family of geometric objects. We call a point a strong centerpoint of
w.r.t if is contained in all that
contains more than points from , where is a fixed constant. A
strong centerpoint does not exist even when is the family of
halfspaces in the plane. We prove the existence of strong centerpoints with
exact constants for convex polytopes defined by a fixed set of orientations. We
also prove the existence of strong centerpoints for abstract set systems with
bounded intersection
Small Strong Epsilon Nets
Let P be a set of n points in . A point x is said to be a
centerpoint of P if x is contained in every convex object that contains more
than points of P. We call a point x a strong centerpoint for a
family of objects if is contained in every object that contains more than a constant fraction of points of P. A
strong centerpoint does not exist even for halfspaces in . We
prove that a strong centerpoint exists for axis-parallel boxes in
and give exact bounds. We then extend this to small strong
-nets in the plane and prove upper and lower bounds for
where is the family of axis-parallel
rectangles, halfspaces and disks. Here represents the
smallest real number in such that there exists an
-net of size i with respect to .Comment: 19 pages, 12 figure
Selection Lemmas for various geometric objects
Selection lemmas are classical results in discrete geometry that have been
well studied and have applications in many geometric problems like weak epsilon
nets and slimming Delaunay triangulations. Selection lemma type results
typically show that there exists a point that is contained in many objects that
are induced (spanned) by an underlying point set.
In the first selection lemma, we consider the set of all the objects induced
(spanned) by a point set . This question has been widely explored for
simplices in , with tight bounds in . In our paper,
we prove first selection lemma for other classes of geometric objects. We also
consider the strong variant of this problem where we add the constraint that
the piercing point comes from . We prove an exact result on the strong and
the weak variant of the first selection lemma for axis-parallel rectangles,
special subclasses of axis-parallel rectangles like quadrants and slabs, disks
(for centrally symmetric point sets). We also show non-trivial bounds on the
first selection lemma for axis-parallel boxes and hyperspheres in
.
In the second selection lemma, we consider an arbitrary sized subset of
the set of all objects induced by . We study this problem for axis-parallel
rectangles and show that there exists an point in the plane that is contained
in rectangles. This is an improvement over the previous
bound by Smorodinsky and Sharir when is almost quadratic
Polynomial Kernels for Generalized Domination Problems
In this paper, we study the parameterized complexity of a generalized
domination problem called the [] Dominating Set problem. This
problem generalizes a large number of problems including the Minimum Dominating
Set problem and its many variants. The parameterized complexity of the
[] Dominating Set problem parameterized by treewidth is well
studied. Here the properties of the sets and that make the
problem tractable are identified [1]. We consider a larger parameter and
investigate the existence of polynomial sized kernels. When and
are finite, we identify the exact condition when the [] Dominating Set problem parameterized by vertex cover admits polynomial
kernels. Our lower and upper bound results can also be extended to more general
conditions and provably smaller parameters as well.Comment: 19 pages, 6 figure
Exact Algorithms for Terrain Guarding
Given a 1.5-dimensional terrain T, also known as an x-monotone polygonal chain, the Terrain Guarding problem seeks a set of points of minimum size on T that guards all of the points on T. Here, we say that a point p guards a point q if no point of the line segment pq is strictly below T. The Terrain Guarding problem has been extensively studied for over 20 years. In 2005 it was already established that this problem admits a constant-factor approximation algorithm [SODA 2005]. However, only in 2010 King and Krohn [SODA 2010] finally showed that Terrain Guarding is NP-hard. In spite of the remarkable developments in approximation algorithms for Terrain Guarding, next to nothing is known about its parameterized complexity. In particular, the most intriguing open questions in this direction ask whether it admits a subexponential-time algorithm and whether it is fixed-parameter tractable. In this paper, we answer the first question affirmatively by developing an n^O(sqrt{k})-time algorithm for both Discrete Terrain Guarding and Continuous Terrain Guarding. We also make non-trivial progress with respect to the second question: we show that Discrete Orthogonal Terrain Guarding, a well-studied special case of Terrain Guarding, is fixed-parameter tractable
Small strong epsilon nets
Let P be a set of n points in R-d. A point x is said to be a centerpoint of P if x is contained in every convex object that contains more than dn/d+1 points of P. We call a point x a strong centerpoint for a family of objects C if x is an element of P is contained in every object C is an element of C that contains more than a constant fraction of points of P. A strong centerpoint does not exist even for halfspaces in R-2. We prove that a strong centerpoint exists for axis-parallel boxes in Rd and give exact bounds. We then extend this to small strong epsilon-nets in the plane. Let epsilon(S)(i) represent the smallest real number in 0, 1] such that there exists an epsilon(S)(i)-net of size i with respect to S. We prove upper and lower bounds for epsilon(S)(i) where S is the family of axis-parallel rectangles, halfspaces and disks. (C) 2014 Elsevier B.V. All rights reserved