61 research outputs found

    Cavity optomechanical mass sensor in water with sub-femtogram resolution

    Full text link
    Sub-femtogram resolution of an in-liquid cavity optomechanical mass sensor based on the twin-microbottle glass resonator is demonstrated. An evaluation of the frequency stability using an optomechanical phase-locked loop reveals that this cavity optomechanical sensor has the highest mass resolution of (7.0Γ—2.0)Γ—10βˆ’16(7.0\times2.0)\times 10^{-16} g in water, which is four orders of magnitude better than that in our first-generation setup [Sci. Adv. 8, eabq2502 (2022)]. This highly sensitive mass sensor provides a free-access optomechanical probe in liquid and could thus be extended to a wide variety of in-situ chemical and biological metrology applications

    Quadrature skyrmions in two-dimensionally arrayed parametric resonators

    Full text link
    Skyrmions are topological solitons in two-dimensional systems and have been observed in various physical systems. Generating and controlling skyrmions in artificial resonator arrays lead to novel acoustic, photonic, and electric devices, but it is a challenge to implement a vector variable with the chiral exchange interaction. Here, we propose to use quadrature variables, where their parametric coupling enables skyrmions to be stabilized. A finite-element simulation indicates that a stable acoustic skyrmion would exist in a realistic structure consisting of a piezoelectric membrane array.Comment: 22 pages, 10 figure

    Cavity magnomechanical coupling with coupled magnon modes in a synthetic antiferromagnet

    Full text link
    On-chip cavity magnomechanics is an emerging field exploring acoustic and magnonic functionalities of various ferromagnetic materials and structures using strongly confined phonons. It is expected that such cavity magnomechanics can be extended to multilayer ferromagnets, especially synthetic antiferromagnets (SAFs) that exhibit zero net magnetization through interlayer exchange coupling. However, the conventional theoretical framework for a single ferromagnet cannot be used directly because of the antiferromagnetic magnetization dynamics associated with the interlayer exchange coupling. In this paper, we theoretically investigate phonon-magnon coupling with a three-layer SAF. Our formulation of the phonon-magnon coupling constants reveals that the acoustic (optical) magnon mode dominantly couples to the cavity phonon when the magnetization angles in the two ferromagnetic layers are antiparallel (orthogonal). Moreover, numerical calculations including the effects of dipole-dipole interactions and in-plane uniaxial magnetic anisotropy allow us to predict phonon frequency shifts and linewidth broadening that can be detected in experiments. These theoretical insights would greatly help us to make a strategy for bringing the system into the strong coupling regime and to devise novel control protocols in analogy to cavity quantum electrodynamics and cavity optomechanics
    • …
    corecore