418 research outputs found
PAR1 activation induces the release by Schwann cells of factors promoting cell survival and neuritogenesis
Protease-activated receptor 1 (PAR1) is a member of a family of four G-protein-coupled receptors which are activated by proteolytic cleavage of their N-terminal extracellular domain. The expression and the role of PAR1 in peripheral nervous system (PNS) is still poorly investigated, although high PAR1 mRNA expression was found in the dorsal root ganglia and in the non-compacted Schwann cell myelin microvilli at the nodes of Ranvier. Schwann cells (SCs) are the principal population of glial cells of the PNS which myelinate axons and play a key role in axonal regeneration and remyelination. Aim of the present study was to determine if the activation of PAR1 affects the neurotrophic properties of SCs. By double immunofluorescence we observed a specific staining for PAR1 in S100ȕ-positive cells of rat sciatic nerve and sciatic teased fibers. Moreover, PAR1 was highly expressed in SC cultures obtained from both neonatal and adult rat sciatic nerves. When PAR1 specific agonists were added to these cultures an increased proliferation rate was observed. Moreover, the conditioned medium obtained from primary SCs treated with PAR1 agonists increased cell survival and neurite outgrowth on PC12 cells respect to controls. By proteomics, western blot and RT-PCR analyses we identified five proteins which are released by SCs following PAR1 stimulation: Macrophage migration inhibitory factor (Mif), Aldose reductase (Akr1b1), Matrix metalloproteinase-2 (Mmp2), Syndecan-4 (Sdc) and Decorin (Dcn). Conversely, a significant decrease in the level of three proteins was observed: Complement C1r subcomponent (C1r) and Complement component 1 Q subcomponent-bindingprotein (C1qbp). When PAR1 expression was silenced by siRNA the observed pro-survival and neurotrophic properties of SCs appear to be reduced respect to controls. References PAR1 activation affects the neurotrophic properties of Schwann cells. Pompili E1, Fabrizi C2, Somma F2, Correani V3, Maras B3, Schininà ME3, Ciraci V2, Artico M4, Fornai F5, Fumagalli L2. 2017 Jan 4;79:23-33. doi: 10.1016/j.mcn.2017.01.001.Schwann cells (SCs) regulate a wide variety of axonal functions in the peripheral nervous system, providing a supportive growth environment following nerve injury (1). Here we show that rat SCs express the protease-activated receptor-1 (PAR1) both in vivo and in vitro. PAR1 is a G-protein coupled receptor eliciting cellular responses to thrombin and other proteases (2). To investigate if PAR1 activation affects the neurotrophic properties of SCs, this receptor was activated by a specific agonist peptide (TFLLR) and the conditioned medium was transferred to PC12 pheocromocytoma cells for assessing cell survival and neurite outgrowth. Culture medium from SCs treated with 10 µM TFLLR reduced significantly the release of LDH and increased the viability of PC12 cells with respect to the medium of the untreated SCs. Furthermore, conditioned medium from TFLLR-treated SCs increased neurite outgrowth on PC12 cells respect to control medium from untreated cells. To identify putative neurotrophic candidates we performed proteomic analysis on SC secretoma and real time PCR experiments after PAR1 activation. Stimulation of SCs with TFLLR increased specifically the release of a subset of five proteins: Macrophage migration inhibitory factor (Mif), Aldose reductase (Akr1b1), Matrix metalloproteinase-2 (Mmp2), Syndecan-4 (Sdc) and Decorin (Dcn). At the same time there was a significant decrease in the level of three proteins: Complement C1r subcomponent (C1r), Complement component 1 Q subcomponent-binding protein (C1qbp) and Angiogenic factor with G patch and FHA domains 1 (Aggf1). These data indicate that PAR1 stimulation does induce the release by SCs of factors promoting cell survival and neuritogenesis. Among these proteins, Mif, Sdc, Dcn and Mmp2 are of particular interest
Degeneration and regeneration of peripheral nerves: role of thrombin and its receptor PAR-1
The peripheral nervous system has a striking regeneration potential and after damage extensive changes in the differentiation state both of the injured neurons and of the Schwann cells are observed. Schwann cells, in particular, undergo a large scale change in gene expression becoming able to support axonal regeneration. Nerve injury is generally associated to inflammation and activation of the coagulation cascade. Thrombin acts as a polyfunctional signalling molecule exerting its physiological function through soluble target proteins and G-protein-coupled receptors, the protease-activated receptors (PARs) [1]. Recently, we have demonstrated that the activation of the main thrombin receptor, PAR-1, in Schwann cells favours their regenerative potential determining the release of factors which promote axonal regrowth [2]. The pro-regenerative potential of thrombin seems to be exerted in a narrow range of concentrations (pM-nM range). In fact, our preliminary data indicate that high levels of thrombin in the micromolar range slow down Schwann cell proliferation and induce cell death. On the contrary, PAR-1 activating peptides mimic the pro-survival but not the pro-apoptotic effects of thrombin. Controlling thrombin concentration may preserve neuronal health during nerve injury and represent a novel target for pharmacologic therapies
Cancer progression: a single cell perspective
Tumor tissues are constituted by a dynamic diversity of malignant and non-malignant cells, which shape a puzzling biological ecosystem affecting cancer biology and response to treatments. Over the course of the tumoral disease, cancer cells acquire genotypic and phenotypic changes, allowing them to improve cellular fitness and overcome environmental and treatment constraints. This progression is depicted by an evolutionary process in which single cells expand as a result of an interaction between single-cell changes and the lovelopments have made it possible to depict the development of cancer at the single-cell level, offering a novel method for understanding the biology of this complex disease. Here, we review those complex interactions from the perspective of single cells and introduce the concept of omics for single-cell studies. This review emphasizes the evolutionary dynamics that control cancer progression and the capacity of single cells to escape the local environment and colonize distant sites. We are assisting a rapid progression of studies carried out at the single-cell level, and we survey relevant single-cell technologies looking at multi-omics studies. These path for precision medicine in cancer
Bifid median nerve: report of two cases
The median nerve divides into its terminal branches at or proximal to the distal edge of the flexor retinaculum. An anatomy of the median nerve within the carpal tunnel is reported in two separate cases. Emphasis has been given to the value of direct vision when incising the flexor retinaculum in order to avoid injure of the median nerve
Euphorbia kurtzii Subils
Rio Carnero, ruta 9, antes de llegar a Jesús MaríapublishedVersio
Oenothera siambonensis W. Dietr.
Ruta Nº 64: Próximo a El PortezueloUniversidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentin
Caracterização de acessos de Cevadilha vacariana pela integração de descritores morfoagronômicos qualitativos e quantitativos.
A espécie Bromus auleticus, conhecida popularmente como cevadilha vacariana tem despertado interesse em profissionais de plantas forrageiras há algum tempo. Uma série de atributos, como boa qualidade de forragem, adaptação local e oferta de forragem na época de outono-inverno (período de maior carência alimentar dos rebanhos), são fatores decisórios na escolha desta planta visando o melhoramento e sua disseminação. Neste contexto, o objetivo do trabalho foi a caracterização morfoagronômica de onze acessos de B. auleticus utilizando descritores qualitativos (cor da folha, pilosidade e hábito de crescimento) e os descritores quantitativos (comprimento e largura da folha bandeira, altura natural no florescimento, comprimentos do entrenó superior e da inflorescência).Editores técnicos: Rodrigo Cezar Franzon, Caroline Marques Castro, Alexandre Floriani Ramos, Sueli Correa Marques de Mello. SIRGEALC
- …