700 research outputs found

    Effects of Aspen Phenolic Glycosides on Gypsy Moth (Lepidoptera: Lymantriidae) Susceptibility to \u3ci\u3eBacillus Thuringiensis\u3c/i\u3e

    Get PDF
    Performance of the gypsy moth, Lymantria dispar, on quaking aspen, Populus tremuloides, is strongly affected by foliar concentrations of phenolic glycosides. Because the microbial insecticide Bacillus thuringiensis is widely used against gypsy moths and has a mode of action similar to that of phenolic glycosIdes, we investigated the combined effects of the two toxins on gypsy moth larvae. The experimental design was a 2 x 2 factorial: two levels (0, +) of phenolicglycosides for each of two levels (0, +) of B. thuringiensis. The toxins were incorporated into artificial diets and bioassayed against first and fourth instars. Bacillus thuringiensis and phenolic glycosides ne~atively and addi· tively affected larval survival, growth and development tImes. Both agents slightly reduced consumption rates. In addition, B. thuringiensis reduced diet digestibility whereas phenolic glycosides decreased the efficiency with which food was converted to biomass. These results suggest that the efficacy of B. thuringiensis applications in aspen forests is likely to be affected by the allelo· chemical composition of foliage

    Acute Alcohol-Induced Liver Injury

    Get PDF
    Alcohol consumption is customary in most cultures and alcohol abuse is common worldwide. For example, more than 50% of Americans consume alcohol, with an estimated 23.1% of Americans participating in heavy and/or binge drinking at least once a month. A safe and effective therapy for alcoholic liver disease (ALD) in humans is still elusive, despite significant advances in our understanding of how the disease is initiated and progresses. It is now clear that acute alcohol binges not only can be acutely toxic to the liver, but also can contribute to the chronicity of ALD. Potential mechanisms by which acute alcohol causes damage include steatosis, dysregulated immunity and inflammation, and altered gut permeability. Recent interest in modeling acute alcohol exposure has yielded new insights into potential mechanisms of acute injury, which also may well be relevant for chronic ALD. Recent work by this group on the role of PAI-1 and fibrin metabolism in mediating acute alcohol-induced liver damage serve as an example of possible new targets that may be useful for alcohol abuse, be it acute or chronic

    Dynamisch modelonderzoek op twee typen visborden

    Get PDF

    Transitional Remodeling of the Hepatic Extracellular Matrix in Alcohol-Induced Liver Injury

    Get PDF
    Alcohol consumption is a common custom worldwide, and the toxic effects of alcohol on several target organs are well understood. The liver is the primary site of alcohol metabolism and is therefore the major target of alcohol toxicity. Alcoholic liver disease is a spectrum of disease states, ranging from simple steatosis (fat accumulation), to inflammation, and eventually to fibrosis and cirrhosis if untreated. The fibrotic stage of ALD is primarily characterized by robust accumulation of extracellular matrix (ECM) proteins (collagens) which ultimately impairs the function of the organ. The role of the ECM in early stages of ALD is poorly understood, but recent research has demonstrated that a number of changes in the hepatic ECM in prefibrotic ALD not only are present, but may also contribute to disease progression. The purpose of this review is to summarize the established and proposed changes to the hepatic extracellular matrix (ECM) that may contribute to earlier stages of ALD development and to discuss potential mechanisms by which these changes may mediate the progression of the disease

    Matrix metalloproteinase inhibitor, CTS-1027, attenuates liver injury and fibrosis in the bile duct-ligated mouse.

    Get PDF
    Aim: Excessive matrix metalloproteinase (MMP) activity has been implicated in the pathogenesis of acute and chronic liver injury. CTS-1027 is an MMP inhibitor, which has previously been studied in humans as an anti-arthritic agent. Thus, our aim was to assess if CTS-1027 is hepato-protective and anti-fibrogenic during cholestatic liver injury. Methods: C57/BL6 mice were subjected to bile duct ligation (BDL) for 14 days. Either CTS-1027 or vehicle was administered by gavage. Results: BDL mice treated with CTS-1027 demonstrated a threefold reduction in hepatocyte apoptosis as assessed by the TUNEL assay or immunohistochemistry for caspase 3/7-positive cells as compared to vehicle-treated BDL animals (P \u3c 0.01). A 70% reduction in bile infarcts, a histological indicator of liver injury, was also observed in CTS-1027-treated BDL animals. These differences could not be ascribed to differences in cholestasis as serum total bilirubin concentrations were nearly identical in the BDL groups of animals. Markers for stellate cell activation (alpha-smooth muscle actin) and hepatic fibrogenesis (collagen 1) were reduced in CTS-1027 versus vehicle-treated BDL animals (P \u3c 0.05). Overall animal survival following 14 days of BDL was also improved in the group receiving the active drug (P \u3c 0.05). Conclusion: The BDL mouse, liver injury and hepatic fibrosis are attenuated by treatment with the MMP inhibitor CTS-1027. This drug warrants further evaluation as an anti-fibrogenic drug in hepatic injury

    Evidence that hypoxia markers detect oxygen gradients in liver: pimonidazole and retrograde perfusion of rat liver

    Get PDF
    Evidence that hypoxia markers detect oxygen gradients in liver: pimonidazole and retrograde perfusion of rat live

    Critical role of plasminogen activator inhibi- tor-1 in cholestatic liver injury and fibrosis

    Get PDF
    ABSTRACT Plasminogen activator inhibitor-1 (PAI-1) is an acute phase protein known to correlate with hepatic fibrosis. However, whether or not PAI-1 plays a causal role in this disease process had not been directly tested. Therefore, wild-type or PAI-1 knockout (PAI-1 Ϫ/Ϫ ) mice underwent bile duct ligation. Mice were sacrificed either 3 or 14 days after surgery for assessment of early (i.e., inflammation) and late (i.e., fibrosis) changes caused by bile duct ligation. Liver injury was determined by histopathology and plasma enzymes. Accumulation of extracellular matrix was evaluated by Sirius red staining and by measuring hydroxyproline content. Hepatic expression of PAI-1 was increased ϳ9-fold by bile duct ligation in wild-type mice. Furthermore, early liver injury and inflammation due to bile duct ligation was significantly blunted in PAI-1 Ϫ/Ϫ mice in comparison with wild-type mice. Although PAI-1 Ϫ/Ϫ mice were significantly protected against the accumulation of extracellular matrix caused by bile duct ligation, increases in expression of indices of stellate cell activation and collagen synthesis caused by bile duct ligation were not attenuated. Protection did, however, correlate with an elevation in hepatic activities of plasminogen activator and matrix metalloprotease activities. In contrast, the increase in tissue inhibitor of metalloproteases-1 protein, a major inhibitor of matrix metalloproteases, caused by bile duct ligation was not altered in PAI-1 Ϫ/Ϫ mice compared with the wild-type strain. The increase in hepatic activity of urokinase-type plasminogen activator was also accompanied by more activation of the hepatocyte growth factor receptor c-Met. Taken together, these data suggest that PAI-1 plays a causal role in mediating fibrosis during cholestasis
    corecore