95 research outputs found

    レーザースペックルフローグラフィーを用いて測定した硝子体手術の術前、術中、術後の眼血流

    Get PDF
    BACKGROUND AND OBJECTIVE: Vitrectomy markedly alters the intraocular milieu, which can then affect the physiology of the retina and choroid. This study investigates whether vitrectomy also alters ocular blood flow as determined by laser speckle flowgraphy (LSFG). PATIENTS AND METHODS: Twenty eyes of 20 patients that underwent vitrectomy for idiopathic macular hole or epiretinal membrane were studied. Standard 23-gauge microincision vitreous surgery was performed. Ocular blood flow of the optic nerve head, retinal vessels, and choroid was determined by LSGF before, during, and 2 weeks and 1 month after vitrectomy. RESULTS: Postoperative blood flow of the optic nerve head, retinal vessels, and choroid did not differ significantly from preoperative values. Intraoperative blood flow of the optic nerve head and retinal vessels decreased significantly from baseline with increasing infusion pressure from 20 mm Hg to 40 mm Hg (P < .01), and choroidal blood flow decreased significantly when the infusion pressure increased from 8 mm Hg to 20 mm Hg and from 20 mm Hg to 40 mm Hg (both P < .01). CONCLUSION: Blood flow did not differ significantly postoperatively versus preoperatively, but it was significantly reduced during vitrectomy with increasing infusion pressure. Careful attention should be paid to infusion pressure during vitrectomy.博士(医学)・乙第1368号・平成27年11月27日Copyright ©2014, SLACK Incorporated. All Rights Reserved.The definitive version is available at " http://dx.doi.org/10.3928/23258160-20140306-04

    Development of the conceptual framework for the Eye-Drop Satisfaction Questionnaire (EDSQ©) in glaucoma using a qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Compliance is a major issue in glaucoma care. It is usually poor in glaucomatous patients, and may ultimately result in an acceleration of the disease progression and a risk of blindness. Reasons for this poor compliance are complex and multifactorial, amongst which patient satisfaction can be counted. The objective of this study was to develop a questionnaire to assess patient satisfaction and compliance with eye-drop treatment.</p> <p>Methods</p> <p>A qualitative study was carried out to develop the questionnaire. An interview guide was developed based on a literature review. Structured interviews of fifteen French and English patients with primary open-angle glaucoma or intraocular hypertension were conducted by trained interviewers of the native language of the interviewees. General concepts and subconcepts were identified from the transcripts. The questionnaire was developed using the patient verbatim, and submitted to six patients (French and English) for cognitive debriefing. Following patients' comments, items were modified and restructured, and a pilot questionnaire was designed.</p> <p>Results</p> <p>Analysis of data from the interviews with patients and clinicians resulted in the elicitation of concepts related to patient satisfaction and compliance with glaucomatous treatment. These were further refined and used to generate a test questionnaire, which consisted of 46 items grouped into 6 domains: patient characteristics, treatment characteristics, patient-clinician relationship, patient experience with the disease and the treatment, interaction between the patient and the treatment, and patient knowledge of the disease and the treatment.</p> <p>Conclusion</p> <p>The Eye-Drop Satisfaction Questionnaire (EDSQ) conceptual framework and items were developed simultaneously in French and in English. This questionnaire could be used to evaluate patient satisfaction and compliance with eye-drop treatment and would facilitate the identification of patients at risk of being non-compliant prior to clinical trials or innovative device tests. A psychometric study is under way to validate the questionnaire.</p

    Evaluation of a combined index of optic nerve structure and function for glaucoma diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The definitive diagnosis of glaucoma is currently based on congruent damage to both optic nerve structure and function. Given widespread quantitative assessment of both structure (imaging) and function (automated perimetry) in glaucoma, it should be possible to combine these quantitative data to diagnose disease. We have therefore defined and tested a new approach to glaucoma diagnosis by combining imaging and visual field data, using the anatomical organization of retinal ganglion cells.</p> <p>Methods</p> <p>Data from 1499 eyes of glaucoma suspects and 895 eyes with glaucoma were identified at a single glaucoma center. Each underwent Heidelberg Retinal Tomograph (HRT) imaging and standard automated perimetry. A new measure combining these two tests, the structure function index (SFI), was defined in 3 steps: 1) calculate the probability that each visual field point is abnormal, 2) calculate the probability of abnormality for each of the six HRT optic disc sectors, and 3) combine those probabilities with the probability that a field point and disc sector are linked by ganglion cell anatomy. The SFI was compared to the HRT and visual field using receiver operating characteristic (ROC) analysis.</p> <p>Results</p> <p>The SFI produced an area under the ROC curve (0.78) that was similar to that for both visual field mean deviation (0.78) and pattern standard deviation (0.80) and larger than that for a normalized measure of HRT rim area (0.66). The cases classified as glaucoma by the various tests were significantly non-overlapping. Based on the distribution of test values in the population with mild disease, the SFI may be better able to stratify this group while still clearly identifying those with severe disease.</p> <p>Conclusions</p> <p>The SFI reflects the traditional clinical diagnosis of glaucoma by combining optic nerve structure and function. In doing so, it identifies a different subset of patients than either visual field testing or optic nerve head imaging alone. Analysis of prospective data will allow us to determine whether the combined index of structure and function can provide an improved standard for glaucoma diagnosis.</p

    Bioinformatic and statistical analysis of the optic nerve head in a primate model of ocular hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nonhuman primate model of glaucomatous optic neuropathy most faithfully reproduces the human disease. We used high-density oligonucleotide arrays to investigate whole genome transcriptional changes occurring at the optic nerve head during primate experimental glaucoma.</p> <p>Results</p> <p>Laser scarification of the trabecular meshwork of cynomolgus macaques produced elevated intraocular pressure that was monitored over time and led to varying degrees of damage in different samples. The macaques were examined clinically before enucleation and the myelinated optic nerves were processed post-mortem to determine the degree of neuronal loss. Global gene expression was examined in dissected optic nerve heads with Affymetrix GeneChip microarrays. We validated a subset of differentially expressed genes using qRT-PCR, immunohistochemistry, and immuno-enriched astrocytes from healthy and glaucomatous human donors. These genes have previously defined roles in axonal outgrowth, immune response, cell motility, neuroprotection, and extracellular matrix remodeling.</p> <p>Conclusion</p> <p>Our findings show that glaucoma is associated with increased expression of genes that mediate axonal outgrowth, immune response, cell motility, neuroprotection, and ECM remodeling. These studies also reveal that, as glaucoma progresses, retinal ganglion cell axons may make a regenerative attempt to restore lost nerve cell contact.</p

    Corticosteroids in ophthalmology : drug delivery innovations, pharmacology, clinical applications, and future perspectives

    Get PDF
    corecore