27 research outputs found
Forearm rotation improves after corrective osteotomy in patients with symptomatic distal radius malunion
Objectives: Distal radius malunion can result in pain and functional complaints. One of the functional problems that can affect daily life is impaired forearm rotation. The primary aim of this study was to investigate the effect of corrective osteotomy for distal radius malunion on forearm rotation at 12 months after surgery. We secondarily studied the effect on grip strength, radiological measurements, and patient-reported outcome measurements (PROMs). Patients and methods: This cohort study analysed prospectively collected data of adult patients with symptomatic distal radius malunion. All patients underwent corrective osteotomy for malunion and were followed for 1 year. We measured forearm rotation (pronation and supination) and grip strength and analysed radiographs. PROMs consisted of the Patient-Rated Hand/Wrist Evaluation (PRWHE) questionnaire, Visual Analogue Scale for pain, and satisfaction with hand function. Results:Preoperative total forearm rotation was 112° (SD: 34°), of which supination of 49° (SD: 25°) was more impaired than pronation of 63° (SD: 17°). Twelve months after surgery, an unpaired Student's t-test showed a significant improvement of total forearm rotation to 142° (SD: 17°) (p < 0.05). Pronation improved to 72° (SD: 10°), and supination to 69° (SD: 13°) (p < 0.05). Grip strength, PROMs, as well as inclination and volar tilt on radiographs improved significantly during the first year after surgery (p < 0.05). Conclusion: In patients with reduced forearm rotation due to distal radius malunion, corrective osteotomy is an effective treatment that significantly improves forearm rotation. In addition, this intervention improves grip strength, the PRWHE-score, pain, and satisfaction with hand function.</p
Antimatter Regions in the Early Universe and Big Bang Nucleosynthesis
We have studied big bang nucleosynthesis in the presence of regions of
antimatter. Depending on the distance scale of the antimatter region, and thus
the epoch of their annihilation, the amount of antimatter in the early universe
is constrained by the observed abundances. Small regions, which annihilate
after weak freezeout but before nucleosynthesis, lead to a reduction in the 4He
yield, because of neutron annihilation. Large regions, which annihilate after
nucleosynthesis, lead to an increased 3He yield. Deuterium production is also
affected but not as much. The three most important production mechanisms of 3He
are 1) photodisintegration of 4He by the annihilation radiation, 2) pbar-4He
annihilation, and 3) nbar-4He annihilation by "secondary" antineutrons produced
in anti-4He annihilation. Although pbar-4He annihilation produces more 3He than
the secondary nbar-4He annihilation, the products of the latter survive later
annihilation much better, since they are distributed further away from the
annihilation zone.Comment: 15 pages, 9 figures. Minor changes to match the PRD versio
Comparing the cumulative live birth rate of cleavage-stage versus blastocyst-stage embryo transfers between IVF cycles: a study protocol for a multicentre randomised controlled superiority trial (the ToF trial)
Introduction In vitro fertilisation (IVF) has evolved as an intervention of choice to help couples with infertility to conceive. In the last decade, a strategy change in the day of embryo transfer has been developed. Many IVF centres choose nowadays to transfer at later stages of embryo development, for example, transferring embryos at blastocyst stage instead of cleavage stage. However, it still is not known which embryo transfer policy in IVF is more efficient in terms of cumulative live birth rate (cLBR), following a fresh and the subsequent frozen-thawed transfers after one oocyte retrieval. Furthermore, studies reporting on obstetric and neonatal outcomes from both transfer policies are limited. Methods and analysis We have set up a multicentre randomised superiority trial in the Netherlands, named the Three or Fivetrial. We plan to include 1200 women with an indication for IVF with at least four embryos available on day 2 after the oocyte retrieval. Women are randomly allocated to either (1) control group: embryo transfer on day 3 and cryopreservation of supernumerary good-quality embryos on day 3 or 4, or (2) intervention group: embryo transfer on day 5 and cryopreservation of supernumerary good-quality embryos on day 5 or 6. The primary outcome is the cLBR per oocyte retrieval. Secondary outcomes include LBR following fresh transfer, multiple pregnancy rate and time until pregnancy leading a live birth. We will also assess the obstetric and neonatal outcomes, costs and patients' treatment burden. Ethics and dissemination The study protocol has been approved by the Central Committee on Research involving Human Subjects in the Netherlands in June 2018 (CCMO NL 64060.000.18). The results of this trial will be submitted for publication in international peer-reviewed and in open access journals