6 research outputs found
Design of a Mobile Agent for Monitoring Activities of Users
Monitoring is an aspect of network management aimed at ensuring optimal performance of the network and that the users play by the rules. This paper presents the design of a mobile agent for monitoring the activities of users in a network. Users’ activities can be localized on their personal workstation or extended to the enterprise network and the Internet, in which case it can impact on the subscribed bandwidth, which is a shared resource of the corporate entity that they represent. All users hope to work in an environment of unlimited resources, including disk space, RAM and bandwidth. However, though the cost of these computing resources have reduced significantly owning to advances in microelectronic technology, they are still far from being free and inexhaustible. In this research, we design a mobile agent tool that can monitor users’ activities in a network environment with a view to enhancing the effective utilisation of system resources, and in particular, the physical memory. The aim is to enable optimal resource utilisation in the network environment. In this paper, we define a mathematical formulation of user activities, load overhead of mobile agents and itinerary partition to avoid the over-bloating problem. The architecture of the mobile agent is explained. Keywords: Mobile Agent; System resources; Computer network; Code Mobility; Monitorin
Design of a Mobile Agent for Monitoring Activities of Users
Monitoring is an aspect of network management aimed at ensuring optimal performance of the network and that the users play by the rules. This paper presents the design of a mobile agent for monitoring the activities of users in a network. Users’ activities can be localized on their personal workstation or extended to the enterprise network and the Internet, in which case it can impact on the subscribed bandwidth, which is a shared resource of the corporate entity that they represent. All users hope to work in an environment of unlimited resources, including disk space, RAM and bandwidth. However, though the cost of these computing resources have reduced significantly owning to advances in microelectronic technology, they are still far from being free and inexhaustible. In this research, we design a mobile agent tool that can monitor users’ activities in a network environment with a view to enhancing the effective utilisation of system resources, and in particular, the physical memory. The aim is to enable optimal resource utilisation in the network environment. In this paper, we define a mathematical formulation of user activities, load overhead of mobile agents and itinerary partition to avoid the over-bloating problem. The architecture of the mobile agent is explained. Keywords: Mobile Agent, System resources, Computer network, Code Mobility, Monitorin
A New Result On Adomian Decomposition Method For Solving Bratu’s Problem
This paper investigates the properties of solution to the nonlinear Bratu’s problem. Approximate solution of the strongly nonlinear problem is obtained using the rapidly convergent Adomian decomposition method. The result shows that the problem has two solutions, bifurcated and has no solution depending on the value of the Frank-Kameneskii parameter. Of particular interest is the determination of the bifurcation point using Adomian decomposition method. Keywords: nonlinear eigenvalue problem, rational function, Adomian decomposition method, Bratu’s problem
Fuzzy Logic Tool to Forecast Soil Fertility in Nigeria
The soil is composed of several nutrients which are important for the effective growth of plants. Nitrogen, phosphorus, and potassium are micronutrients which are very important for plant growth. There have been several methods and soil tests developed to test the compositions of these nutrients in the soil. Interpreting the results gotten from such tests has been a herculean task for farmers. Employing the use of a soft computing method to interpret such result would be a noble idea. In this paper, we describe the use of fuzzy logic to interpret the values of nitrogen, phosphorus, and potassium (NPK) gotten from conventional soil test to know their levels in the soil and predict possible NPK inputs