96 research outputs found
Papel de SLU7 en la diferenciación hepática y en la protección del hígado frente al daño: regulación de HNF4A
El hígado es un órgano con un papel central en el organismo puesto que realiza numerosas
funciones esenciales para mantener la homeostasis sistémica. A nivel histológico, el hígado
presenta una arquitectura compleja y muy organizada, formada por diferentes poblaciones
celulares que desarrollan funciones concretas y, en conjunto, permiten el correcto
funcionamiento del órgano. Así, el hígado está formado por las células parenquimales que
incluyen a los hepatocitos y a los colangiocitos, y las células no parenquimales, que engloban a
las células estrelladas hepáticas (HSC, hepatic stellate cells), las células de Kupffer o las células
endoteliales sinusoidales. La población celular más abundante son los hepatocitos, que
constituyen alrededor de un 80 % de la masa hepática total, y son los que más contribuyen al
desarrollo de la función hepática. Se trata de unas células epiteliales polarizadas, muy
diferenciadas y quiescentes, aunque presentan una gran capacidad de regeneración en
respuesta a estímulos nocivos 1–4
.
Las células hepáticas se organizan en el hígado alrededor de una estructura anatómica
peculiar y compleja, determinada por el patrón del flujo sanguíneo, y que es esencial para que
se puedan llevar a cabo las funciones hepáticas. Brevemente, el hígado recibe sangre de la
vena porta rica en nutrientes y productos de deshecho, y sangre de la arteria hepática rica en
oxígeno, que fluye a través de una red de capilares sinusoidales entre las células hepáticas,
hasta drenar en las venas centrales. Junto a las venas porta y las arterias hepáticas se
encuentran los conductos biliares que conducen la bilis hasta la vesícula biliar y el intestino, y
los tres conductos juntos forman la triada portal. La unidad funcional del hígado son los
lobulillos hepáticos, que consisten en fragmentos poligonales de células hepáticas dispuestas
en torno a una vena central y rodeadas de triadas portales. Los capilares sinusoidales conectan
la vena central con los espacios porta y, en paralelo a ellos, se organizan los hepatocitos
formando cordones gruesos unicelulares (Figura 1A). Tanto la vena porta como la arteria
hepática suministran la sangre a los hepatocitos conforme fluye a través de la red de
sinusoides hasta drenar en las venas centrales. En función de si los hepatocitos se localizan
más cerca de la región periportal o más cerca de la región pericentral, presentan diferencias
fenotípicas en cuanto a la expresión de enzimas metabólicas, por lo que realizan funciones
metabólicas diferentes. Esta distribución diferencial de las funciones metabólicas y secretoras del hígado a lo largo del eje porto-central se conoce como zonación, y constituye un marcador
clave de la maduración hepática (Figura 1B) 1–5
Met signaling in cardiomyocytes is required for normal cardiac function in adult mice
et al.Hepatocyte growth factor (HGF) and its receptor, Met, are key determinants of distinct developmental processes. Although HGF exerts cardio-protective effects in a number of cardiac pathologies, it remains unknown whether HGF/Met signaling is essential for myocardial development and/or physiological function in adulthood. We therefore investigated the requirement of HGF/Met signaling in cardiomyocyte for embryonic and postnatal heart development and function by conditional inactivation of the Met receptor in cardiomyocytes using the Cre-α-MHC mouse line (referred to as α-MHCMet-KO). Although α-MHCMet-KO mice showed normal heart development and were viable and fertile, by 6. months of age, males developed cardiomyocyte hypertrophy, associated with interstitial fibrosis. A significant upregulation in markers of myocardial damage, such as β-MHC and ANF, was also observed. By the age of 9. months, α-MHCMet-KO males displayed systolic cardiac dysfunction. Mechanistically, we provide evidence of a severe imbalance in the antioxidant defenses in α-MHCMet-KO hearts involving a reduced expression and activity of catalase and superoxide dismutase, with consequent reactive oxygen species accumulation. Similar anomalies were observed in females, although with a slower kinetics. We also found that Met signaling down-regulation leads to an increase in TGF-β production and a decrease in p38MAPK activation, which may contribute to phenotypic alterations displayed in α-MHCMet-KO mice. Consistently, we show that HGF acts through p38α to upregulate antioxidant enzymes in cardiomyocytes. Our results highlight that HGF/Met signaling in cardiomyocytes plays a physiological cardio-protective role in adult mice by acting as an endogenous regulator of heart function through oxidative stress control.This work was supported by grants: (AFM)-13683 from Association Française contre les myopathies, France, FIS-PI07/0071 and SAF-2010-20198-C02-01 from Ministry of Science and Innovation, Spain, and grants from Comunidad de Madrid/Universidad Complutense de Madrid: CAM/UCM 920384 and UCM-BSCH 920384, Spain to A.P.; BFU2011-25304 from Ministry of Science and Innovation, Spain, RD12/0019/0022 (TerCel network, ISCIII), P11-CTS-7564 (Junta de Andalucía) to R. M.-Ch.; FRM (Fondation pour la Recherche Médicale), Fondation Bettencourt-Schueller, and Association Française contre les myopathies (AFM) to F.M.; SAF2010-15881 from Ministry of Science and Innovation, Spain, and RD012/0021 (RedinRen network, ISCIII), and GR100 (Junta de Castilla y León) to J.M. L.-N. The cardiovascular phenotyping unit of the University of Salamanca, including the telemetry equipment, has been acquired with the support of the European Regional Development Funds (FEDER).Peer Reviewe
Epigenetic mechanisms in gastric cancer: potential new therapeutic opportunities
Gastric cancer (GC) is one of the deadliest malignancies worldwide. Complex disease
heterogeneity, late diagnosis, and suboptimal therapies result in the poor prognosis of patients.
Besides genetic alterations and environmental factors, it has been demonstrated that alterations of
the epigenetic machinery guide cancer onset and progression, representing a hallmark of gastric
malignancies. Moreover, epigenetic mechanisms undergo an intricate crosstalk, and distinct
epigenomic profiles can be shaped under different microenvironmental contexts. In this scenario,
targeting epigenetic mechanisms could be an interesting therapeutic strategy to overcome gastric
cancer heterogeneity, and the efforts conducted to date are delivering promising results. In this review,
we summarize the key epigenetic events involved in gastric cancer development. We conclude with a
discussion of new promising epigenetic strategies for gastric cancer treatment
Fibroblast growth factors 19 and 21 in acute liver damage
Currently there are very few pharmacological options available to treat acute liver injury. Because
its natural exposure to noxious stimuli the liver has developed a strong endogenous hepatoprotective capacity.
Indeed, experimental evidence exposed a variety of endogenous hepatic and systemic responses naturally
activated to protect the hepatic parenchyma and to foster liver regeneration, therefore preserving individual’s
survival. The fibroblast growth factor (FGF) family encompasses a range of polypeptides with important
effects on cellular differentiation, growth survival and metabolic regulation in adult organisms. Among these
FGFs, FGF19 and FGF21 are endocrine hormones that profoundly influence systemic metabolism but
also exert important hepatoprotective activities. In this review, we revisit the biology of these factors and
highlight their potential application for the clinical management of acute liver injur
Dual Pharmacological Targeting of HDACs and PDE5 Inhibits Liver Disease Progression in a Mouse Model of Biliary Inflammation and Fibrosis
Liver fibrosis, a common hallmark of chronic liver disease (CLD), is characterized by the accumulation of extracellular matrix secreted by activated hepatic fibroblasts and stellate cells (HSC). Fibrogenesis involves multiple cellular and molecular processes and is intimately linked to chronic hepatic inflammation. Importantly, it has been shown to promote the loss of liver function and liver carcinogenesis. No effective therapies for liver fibrosis are currently available. We examined the anti-fibrogenic potential of a new drug (CM414) that simultaneously inhibits histone deacetylases (HDACs), more precisely HDAC1, 2, and 3 (Class I) and HDAC6 (Class II) and stimulates the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway activity through phosphodiesterase 5 (PDE5) inhibition, two mechanisms independently involved in liver fibrosis. To this end, we treated Mdr2-KO mice, a clinically relevant model of liver inflammation and fibrosis, with our dual HDAC/PDE5 inhibitor CM414. We observed a decrease in the expression of fibrogenic markers and collagen deposition, together with a marked reduction in inflammation. No signs of hepatic or systemic toxicity were recorded. Mechanistic studies in cultured human HSC and cholangiocytes (LX2 and H69 cell lines, respectively) demonstrated that CM414 inhibited pro-fibrogenic and inflammatory responses, including those triggered by transforming growth factor β (TGFβ). Our study supports the notion that simultaneous targeting of pro-inflammatory and fibrogenic mechanisms controlled by HDACs and PDE5 with a single molecule, such as CM414, can be a new disease-modifying strateg
Epigenetic mechanisms and metabolic reprogramming in fibrogenesis: dual targeting of G9a and DNMT1 for the inhibition of liver fibrosis
OBJECTIVE: Hepatic stellate cells (HSC) transdifferentiation into myofibroblasts is central to fibrogenesis. Epigenetic mechanisms, including histone and DNA methylation, play a key role in this process. Concerted action between histone and DNA-mehyltransferases like G9a and DNMT1 is a common theme in gene expression regulation. We aimed to study the efficacy of CM272, a first-in-class dual and reversible G9a/DNMT1 inhibitor, in halting fibrogenesis. DESIGN: G9a and DNMT1 were analysed in cirrhotic human livers, mouse models of liver fibrosis and cultured mouse HSC. G9a and DNMT1 expression was knocked down or inhibited with CM272 in human HSC (hHSC), and transcriptomic responses to transforming growth factor-β1 (TGFβ1) were examined. Glycolytic metabolism and mitochondrial function were analysed with Seahorse-XF technology. Gene expression regulation was analysed by chromatin immunoprecipitation and methylation-specific PCR. Antifibrogenic activity and safety of CM272 were studied in mouse chronic CCl4 administration and bile duct ligation (BDL), and in human precision-cut liver slices (PCLSs) in a new bioreactor technology. RESULTS: G9a and DNMT1 were detected in stromal cells in areas of active fibrosis in human and mouse livers. G9a and DNMT1 expression was induced during mouse HSC activation, and TGFβ1 triggered their chromatin recruitment in hHSC. G9a/DNMT1 knockdown and CM272 inhibited TGFβ1 fibrogenic responses in hHSC. TGFβ1-mediated profibrogenic metabolic reprogramming was abrogated by CM272, which restored gluconeogenic gene expression and mitochondrial function through on-target epigenetic effects. CM272 inhibited fibrogenesis in mice and PCLSs without toxicity. CONCLUSIONS: Dual G9a/DNMT1 inhibition by compounds like CM272 may be a novel therapeutic strategy for treating liver fibrosis
Met signaling in cardiomyocytes is required for normal cardiac function in adult mice.
Hepatocyte growth factor (HGF) and its receptor, Met, are key determinants of distinct developmental processes. Although HGF exerts cardio-protective effects in a number of cardiac pathologies, it remains unknown whether HGF/Met signaling is essential for myocardial development and/or physiological function in adulthood. We therefore investigated the requirement of HGF/Met signaling in cardiomyocyte for embryonic and postnatal heart development and function by conditional inactivation of the Met receptor in cardiomyocytes using the Cre-α-MHC mouse line (referred to as α-MHCMet-KO). Although α-MHCMet-KO mice showed normal heart development and were viable and fertile, by 6 months of age, males developed cardiomyocyte hypertrophy, associated with interstitial fibrosis. A significant upregulation in markers of myocardial damage, such as β-MHC and ANF, was also observed. By the age of 9 months, α-MHCMet-KO males displayed systolic cardiac dysfunction. Mechanistically, we provide evidence of a severe imbalance in the antioxidant defenses in α-MHCMet-KO hearts involving a reduced expression and activity of catalase and superoxide dismutase, with consequent reactive oxygen species accumulation. Similar anomalies were observed in females, although with a slower kinetics. We also found that Met signaling down-regulation leads to an increase in TGF-β production and a decrease in p38MAPK activation, which may contribute to phenotypic alterations displayed in α-MHCMet-KO mice. Consistently, we show that HGF acts through p38α to upregulate antioxidant enzymes in cardiomyocytes. Our results highlight that HGF/Met signaling in cardiomyocytes plays a physiological cardio-protective role in adult mice by acting as an endogenous regulator of heart function through oxidative stress control.Comunidad de Madrid/Universidad Complutense de Madrid; Association Française contre les Myopathies; Seventh Framework Programme; Fondation pour la Recherche Médicale; Instituto de Salud Carlos III; Ministerio de Ciencia e Innovación; Fondation Bettencourt Schueller; European Regional Development Fund; Junta de Andalucía; Junta de Castilla y Leó
Splicing factor SLU7 prevents oxidative stress-mediated hepatocyte nuclear factor 4α degradation, preserving hepatic differentiation and protecting from liver damage
Background and Aims: Hepatocellular dedifferentiation is emerging as an important determinant in liver disease progression. Preservation of mature hepatocyte identity relies on a set of key genes, predominantly the transcription factor hepatocyte nuclear factor 4α (HNF4α) but also splicing factors like SLU7. How these factors interact and become dysregulated and the impact of their impairment in driving liver disease are not fully understood. Approach and Results: Expression of SLU7 and that of the adult and oncofetal isoforms of HNF4α, driven by its promoter 1 (P1) and P2, respectively, was studied in diseased human and mouse livers. Hepatic function and damage response were analyzed in wild-type and Slu7-haploinsufficient/heterozygous (Slu7+/−) mice undergoing chronic (CCl4) and acute (acetaminophen) injury. SLU7 expression was restored in CCl4-injured mice using SLU7-expressing adeno-associated viruses (AAV-SLU7). The hepatocellular SLU7 interactome was characterized by mass spectrometry. Reduced SLU7 expression in human and mouse diseased livers correlated with a switch in HNF4α P1 to P2 usage. This response was reproduced in Slu7+/− mice, which displayed increased sensitivity to chronic and acute liver injury, enhanced oxidative stress, and marked impairment of hepatic functions. AAV-SLU7 infection prevented liver injury and hepatocellular dedifferentiation. Mechanistically we demonstrate a unique role for SLU7 in the preservation of HNF4α1 protein stability through its capacity to protect the liver against oxidative stress. SLU7 is herein identified as a key component of the stress granule proteome, an essential part of the cell’s antioxidant machinery. Conclusions: Our results place SLU7 at the highest level of hepatocellular identity control, identifying SLU7 as a link between stress-protective mechanisms and liver differentiation. These findings emphasize the importance of the preservation of hepatic functions in the protection from liver injury.Supported by MINECO/AEI/FEDER (UE SAF2016‐75972‐R, PID2019‐104265RB‐I00/AEI/10.13039/501100011033, and PID2019‐104878RB‐100/AEI/10.13039/501100011033), CIBERehd, Fundación La Caixa (HEPACARE), an AECC postdoctoral fellowship (POSTD18014AREC, to M.A.), a Ministerio de Educación FPU fellowship (FPU18/01461, to M.G.R.), a Ministerio de Educación FPI fellowship (BES‐2017‐079883, to M.R.); a Ramón y Cajal Program contract (RYC2018‐024475‐1, to M.G.F.B.), the Fundación Eugenio Rodríguez Pascual, the Fundación Mario Losantos, the Fundación M. Torres, and a generous donation from Mr. Eduardo Avila
Metabolic-associated fatty liver disease: from simple steatosis towards liver cirrhosis and potential complications. Proceedings of the Third Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH)
This is a meeting report of the 3rd Translational Hepatology Meeting held in Alicante, Spain, in October 2021. The meeting, which was organized by the Spanish Association for the Study of the Liver (AEEH), provided an update on the recent advances in the field of basic and translational hepatology, with a particular focus on the molecular and cellular mechanisms and therapeutic targets involved in metabolic-associated fatty liver disease (MAFLD), metabolic-associated steatohepatitis (MASH), cirrhosis and end-stage hepatocellular carcinoma (HCC).S
Next-generation sequencing of bile cell-free DNA for the early detection of patients with malignant biliary strictures
Objective: despite significant progresses in imaging and pathological evaluation, early differentiation between benign and malignant biliary strictures remains challenging. Endoscopic retrograde cholangiopancreatography (ERCP) is used to investigate biliary strictures, enabling the collection of bile. We tested the diagnostic potential of next-generation sequencing (NGS) mutational analysis of bile cell-free DNA (cfDNA). Design: a prospective cohort of patients with suspicious biliary strictures (n=68) was studied. The performance of initial pathological diagnosis was compared with that of the mutational analysis of bile cfDNA collected at the time of first ERCP using an NGS panel open to clinical laboratory implementation, the Oncomine Pan-Cancer Cell-Free assay. Results: an initial pathological diagnosis classified these strictures as of benign (n=26), indeterminate (n=9) or malignant (n=33) origin. Sensitivity and specificity of this diagnosis were 60% and 100%, respectively, as on follow-up 14 of the 26 and eight of the nine initially benign or indeterminate strictures resulted malignant. Sensitivity and specificity for malignancy of our NGS assay, herein named Bilemut, were 96.4% and 69.2%, respectively. Importantly, one of the four Bilemut false positives developed pancreatic cancer after extended follow-up. Remarkably, the sensitivity for malignancy of Bilemut was 100% in patients with an initial diagnosis of benign or indeterminate strictures. Analysis of 30 paired bile and tissue samples also demonstrated the superior performance of Bilemut. Conclusion: implementation of Bilemut at the initial diagnostic stage for biliary strictures can significantly improve detection of malignancy, reduce delays in the clinical management of patients and assist in selecting patients for targeted therapies.Funding: we thank the financial support of CIBERehd; grants PI16/01126 and PI19/00163 from Instituto de Salud Carlos III (ISCIII) cofinanced by ’Fondo Europeo de Desarrollo Regional’ (FEDER) ’Una manera de hacer Europa’; grants 58/2017 and 55/2018 from Gobierno de Navarra Salud; grant 0011-1411-2020-000010 from AGATA Strategic Project from Gobierno de Navarra; grant 2020/101 from Euroregion Nouvelle Aquitaine-Euskadi-Navarra; Fundación Eugenio Rodríguez Pascual; Fundación Mario Losantos, Fundación M Torres; grant 2018/117 from AMMF, the Cholangiocarcinoma Charity; the COST Action CA181122 Euro-cholangio-Net; POSTD18014AREC postdoctoral fellowship from AECC to MA; and Ramón y Cajal Program contracts RYC-2014-15242 and RYC-2018-024475-1 to FJC and MGFB
- …