68 research outputs found

    Night-time activity forecast by season and weather in a longitudinal design:natural light effects on three years' rest-activity cycles in nursing home residents with dementia

    Get PDF
    Backround: Night-time agitation is a frequent symptom of dementia. It often causes nursing home admission and has been linked to circadian rhythm disturbances. A positive influence of light interventions on night-time agitation was shown in several studies. The aim of our study was to investigate whether there is a long-term association between regional weather data (as indicator for daylight availability) and 24-hour variations of motor activity. Methods: Motor activity of 20 elderly nursing home residents living with dementia was analyzed using recordings of continuously worn wrist activity monitors over a three-year period. The average recording duration was 479 206 days per participant (mean SD). Regional cloud amount and day length data from the local weather station (latitude: 52 degrees 56N) were included in the analysis to investigate their effects on several activity variables. Results: Nocturnal rest, here defined as the five consecutive hours with the least motor activity during 24 hours (L5), was the most predictable activity variable per participant. There was a significant interaction of night-time activity with day length and cloud amount (F-1,F-1174 = 4.39; p = 0.036). Night-time activity was higher on cloudy short days than on clear short days (p = 0.007), and it was also higher on cloudy short days than on cloudy long days (p = 0.032). Conclusions: The need for sufficient zeitgeber (time cue) strength during winter time, especially when days are short and skies are cloudy, is crucial for elderly people living with dementia. Activity forecast by season and weather might be a valuable approach to anticipate adequately complementary use of electrical light and thereby foster lower night-time activity

    #EEGManyLabs: Investigating the replicability of influential EEG experiments

    Get PDF
    There is growing awareness across the neuroscience community that the replicability of findings about the relationship between brain activity and cognitive phenomena can be improved by conducting studies with high statistical power that adhere to well-defined and standardised analysis pipelines. Inspired by recent efforts from the psychological sciences, and with the desire to examine some of the foundational findings using electroencephalography (EEG), we have launched #EEGManyLabs, a large-scale international collaborative replication effort. Since its discovery in the early 20th century, EEG has had a profound influence on our understanding of human cognition, but there is limited evidence on the replicability of some of the most highly cited discoveries. After a systematic search and selection process, we have identified 27 of the most influential and continually cited studies in the field. We plan to directly test the replicability of key findings from 20 of these studies in teams of at least three independent laboratories. The design and protocol of each replication effort will be submitted as a Registered Report and peer-reviewed prior to data collection. Prediction markets, open to all EEG researchers, will be used as a forecasting tool to examine which findings the community expects to replicate. This project will update our confidence in some of the most influential EEG findings and generate a large open access database that can be used to inform future research practices. Finally, through this international effort, we hope to create a cultural shift towards inclusive, high-powered multi-laboratory collaborations

    EEG-BIDS, an extension to the brain imaging data structure for electroencephalography

    Get PDF
    The Brain Imaging Data Structure (BIDS) project is a rapidly evolving effort in the human brain imaging research community to create standards allowing researchers to readily organize and share study data within and between laboratories. Here we present an extension to BIDS for electroencephalography (EEG) data, EEG-BIDS, along with tools and references to a series of public EEG datasets organized using this new standard

    qMRI-BIDS: An extension to the brain imaging data structure for quantitative magnetic resonance imaging data

    Get PDF
    The Brain Imaging Data Structure (BIDS) established community consensus on the organization of data and metadata for several neuroimaging modalities. Traditionally, BIDS had a strong focus on functional magnetic resonance imaging (MRI) datasets and lacked guidance on how to store multimodal structural MRI datasets. Here, we present and describe the BIDS Extension Proposal 001 (BEP001), which adds a range of quantitative MRI (qMRI) applications to the BIDS. In general, the aim of qMRI is to characterize brain microstructure by quantifying the physical MR parameters of the tissue via computational, biophysical models. By proposing this new standard, we envision standardization of qMRI through multicenter dissemination of interoperable datasets. This way, BIDS can act as a catalyst of convergence between qMRI methods development and application-driven neuroimaging studies that can help develop quantitative biomarkers for neural tissue characterization. In conclusion, this BIDS extension offers a common ground for developers to exchange novel imaging data and tools, reducing the entrance barrier for qMRI in the field of neuroimaging

    Microscopy-BIDS: An Extension to the Brain Imaging Data Structure for Microscopy Data

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a specification for organizing, sharing, and archiving neuroimaging data and metadata in a reusable way. First developed for magnetic resonance imaging (MRI) datasets, the community-led specification evolved rapidly to include other modalities such as magnetoencephalography, positron emission tomography, and quantitative MRI (qMRI). In this work, we present an extension to BIDS for microscopy imaging data, along with example datasets. Microscopy-BIDS supports common imaging methods, including 2D/3D, ex/in vivo, micro-CT, and optical and electron microscopy. Microscopy-BIDS also includes comprehensible metadata definitions for hardware, image acquisition, and sample properties. This extension will facilitate future harmonization efforts in the context of multi-modal, multi-scale imaging such as the characterization of tissue microstructure with qMRI

    PET-BIDS, an extension to the brain imaging data structure for positron emission tomography

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a standard for organizing and describing neuroimaging datasets, serving not only to facilitate the process of data sharing and aggregation, but also to simplify the application and development of new methods and software for working with neuroimaging data. Here, we present an extension of BIDS to include positron emission tomography (PET) data, also known as PET-BIDS, and share several open-access datasets curated following PET-BIDS along with tools for conversion, validation and analysis of PET-BIDS datasets

    The past, present, and future of the brain imaging data structure (BIDS)

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS

    PET-BIDS, an extension to the brain imaging data structure for positron emission tomography

    Full text link
    The Brain Imaging Data Structure (BIDS) is a standard for organizing and describing neuroimaging datasets. It serves not only to facilitate the process of data sharing and aggregation, but also to simplify the application and development of new methods and software for working with neuroimaging data. Here, we present an extension of BIDS to include positron emission tomography (PET) data (PET-BIDS). We describe the PET-BIDS standard in detail and share several open-access datasets curated following PET-BIDS. Additionally, we highlight several tools which are already available for converting, validating and analyzing PET-BIDS datasets.Competing Interest StatementThe authors have declared no competing interest

    The Past, Present, and Future of the Brain Imaging Data Structure (BIDS)

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS.Development of the BIDS Standard has been supported by the International Neuroinformatics Coordinating Facility, Laura and John Arnold Foundation, National Institutes of Health (R24MH114705, R24MH117179, R01MH126699, R24MH117295, P41EB019936, ZIAMH002977, R01MH109682, RF1MH126700, R01EB020740), National Science Foundation (OAC-1760950, BCS-1734853, CRCNS-1429999, CRCNS-1912266), Novo Nordisk Fonden (NNF20OC0063277), French National Research Agency (ANR-19-DATA-0023, ANR 19-DATA-0021), Digital Europe TEF-Health (101100700), EU H2020 Virtual Brain Cloud (826421), Human Brain Project (SGA2 785907, SGA3 945539), European Research Council (Consolidator 683049), German Research Foundation (SFB 1436/425899996), SFB 1315/327654276, SFB 936/178316478, SFB-TRR 295/424778381), SPP Computational Connectomics (RI 2073/6-1, RI 2073/10-2, RI 2073/9-1), European Innovation Council PHRASE Horizon (101058240), Berlin Institute of Health & Foundation Charité, Johanna Quandt Excellence Initiative, ERAPerMed Pattern-Cog, and the Virtual Research Environment at the Charité Berlin – a node of EBRAINS Health Data Cloud.N
    • …
    corecore