2 research outputs found

    Oncogenic PKC-ι activates Vimentin during Epithelial-mesenchymal Transition in Melanoma; A Study based on PKC-ι and PKC-ζ specific Inhibitors

    Get PDF
    Melanoma is one of the fastest growing cancers in the United States and is accompanied with a poor prognosis owing to tumors being resistant to most therapies. Atypical protein kinase Cs (aPKC) are involved in malignancy in many cancers. We previously reported that aPKCs play a key role in melanoma\u27s cell motility by regulating cell signaling pathways which induce epithelial-mesenchymal Transition (EMT). We tested three novel inhibitors; [4-(5-amino-4-carbamoylimidazol-1-yl)-2,3-dihydroxycyclopentyl] methyl dihydrogen phosphate (ICA-1T) along with its nucleoside analog 5-amino-1-((1R,2S,3S,4R)-2,3-dihydroxy-4-methylcyclopentyl)-1H-imidazole-4-carboxamide (ICA-1S) which are specific to protein kinase C-iota (PKC-ι) and 8-hydroxy-1,3,6-naphthalenetrisulfonic acid (ζ-Stat) which is specific to PKC-zeta (PKC-ζ) on cell proliferation, apoptosis, migration and invasion of two malignant melanoma cell lines compared to normal melanocytes. Molecular modeling was used to identify potential binding sites for the inhibitors and to predict selectivity. Kinase assay showed \u3e50% inhibition for specified targets beyond 5 μM for all inhibitors. Both ICA-1 and ζ-Stat significantly reduced cell proliferation and induced apoptosis, while ICA-1 also significantly reduced migration and melanoma cell invasion. PKC-ι stimulated EMT via TGFβ/Par6/RhoA pathway and activated Vimentin by phosphorylation at S39. Both ICA-1 and ζ-Stat downregulate TNF-α induced NF-κB translocation to the nucleus there by inducing apoptosis. Results suggest that PKC-ι is involved in melanoma malignancy than PKC-ζ. Inhibitors proved to be effective under in-vitro conditions and need to be tested in-vivo for the validity as effective therapeutics. Overall, results show that aPKCs are essential for melanoma progression and metastasis and that they could be used as effective therapeutic targets for malignant melanoma

    Inhibition of Atypical Protein Kinase C‑ι Effectively Reduces the Malignancy of Prostate Cancer cells by Downregulating the NF-κB Signaling Cascade

    Get PDF
    Prostate cancer (PC) is the most common type of cancer among men. Aggressive and metastatic PC results in lifethreatening tumors, and represents one of the leading causes of mortality in men. Previous studies of atypical protein kinase C isoforms (aPKCs) have highlighted its role in the survival of cultured prostate cells via the nuclear factor (NF)-κB pathway. The present study showed that PKC-ι was overexpressed in PC samples collected from cancer patients but not in non-invasive prostate tissues, indicating PKC-ι as a possible prognostic biomarker for the progression of prostate carcinogenesis. Immunohistochemical staining further confirmed the association between PKC-ι and the prostate malignancy. The DU-145 and PC-3 PC cell lines, and the non-neoplastic RWPE-1 prostatic epithelial cell line were cultured and treated with aPKC inhibitors 2-acetyl-1,3-cyclopentanedione (ACPD) and 5-amino-1-(1R,2S,3S,4R)-2,3-dihydroxy-4-methylcyclopentyl)-1H-imidazole-4-carboxamide (ICA-1). Western blot data demonstrated that ICA‑1 was an effective and specific inhibitor of PKC‑ι and that ACPD inhibited PKC-ι and PKC-ζ. Furthermore, the two inhibitors significantly decreased malignant cell proliferation and induced apoptosis. The inhibitors showed no significant cytotoxicity towards the RWPE-1 cells, but exhibited cytostatic effects on the DU-145 and PC-3 cells prior to inducing apoptosis. The inhibition of aPKCs significantly reduced the translocation of NF-κB to the nucleus. Furthermore, this inhibition promoted apoptosis, reduced signaling for cell survival, and reduced the proliferation of PC cells, whereas the normal prostate epithelial cells were relatively unaffected. Overall, the results suggested that PKC-ι and PKC-ζ are essential for the progression of PC, and that ACPD and ICA-1 can be effectively used as potential inhibitors in targeted therapy
    corecore