109 research outputs found
Special Functions Related to Dedekind Type DC-Sums and their Applications
In this paper we construct trigonometric functions of the sum T_{p}(h,k),
which is called Dedekind type DC-(Dahee and Changhee) sums. We establish
analytic properties of this sum. We find trigonometric representations of this
sum. We prove reciprocity theorem of this sums. Furthermore, we obtain
relations between the Clausen functions, Polylogarithm function, Hurwitz zeta
function, generalized Lambert series (G-series), Hardy-Berndt sums and the sum
T_{p}(h,k). We also give some applications related to these sums and functions
Spacelike Singularities and Hidden Symmetries of Gravity
We review the intimate connection between (super-)gravity close to a
spacelike singularity (the "BKL-limit") and the theory of Lorentzian Kac-Moody
algebras. We show that in this limit the gravitational theory can be
reformulated in terms of billiard motion in a region of hyperbolic space,
revealing that the dynamics is completely determined by a (possibly infinite)
sequence of reflections, which are elements of a Lorentzian Coxeter group. Such
Coxeter groups are the Weyl groups of infinite-dimensional Kac-Moody algebras,
suggesting that these algebras yield symmetries of gravitational theories. Our
presentation is aimed to be a self-contained and comprehensive treatment of the
subject, with all the relevant mathematical background material introduced and
explained in detail. We also review attempts at making the infinite-dimensional
symmetries manifest, through the construction of a geodesic sigma model based
on a Lorentzian Kac-Moody algebra. An explicit example is provided for the case
of the hyperbolic algebra E10, which is conjectured to be an underlying
symmetry of M-theory. Illustrations of this conjecture are also discussed in
the context of cosmological solutions to eleven-dimensional supergravity.Comment: 228 pages. Typos corrected. References added. Subject index added.
Published versio
Towards a Pharmacophore for Amyloid
Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of β-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases
Interaction of Temperature and Light in the Development of Freezing Tolerance in Plants
Abstract Freezing tolerance is the result of a wide range
of physical and biochemical processes, such as the induction
of antifreeze proteins, changes in membrane composition,
the accumulation of osmoprotectants, and changes
in the redox status, which allow plants to function at low
temperatures. Even in frost-tolerant species, a certain period
of growth at low but nonfreezing temperatures, known
as frost or cold hardening, is required for the development
of a high level of frost hardiness. It has long been known
that frost hardening at low temperature under low light
intensity is much less effective than under normal light
conditions; it has also been shown that elevated light
intensity at normal temperatures may partly replace the
cold-hardening period. Earlier results indicated that cold
acclimation reflects a response to a chloroplastic redox
signal while the effects of excitation pressure extend
beyond photosynthetic acclimation, influencing plant
morphology and the expression of certain nuclear genes
involved in cold acclimation. Recent results have shown
that not only are parameters closely linked to the photosynthetic
electron transport processes affected by light
during hardening at low temperature, but light may also
have an influence on the expression level of several other
cold-related genes; several cold-acclimation processes can
function efficiently only in the presence of light. The
present review provides an overview of mechanisms that
may explain how light improves the freezing tolerance of
plants during the cold-hardening period
The one dimensional Kondo lattice model at partial band filling
The Kondo lattice model introduced in 1977 describes a lattice of localized
magnetic moments interacting with a sea of conduction electrons. It is one of
the most important canonical models in the study of a class of rare earth
compounds, called heavy fermion systems, and as such has been studied
intensively by a wide variety of techniques for more than a quarter of a
century. This review focuses on the one dimensional case at partial band
filling, in which the number of conduction electrons is less than the number of
localized moments. The theoretical understanding, based on the bosonized
solution, of the conventional Kondo lattice model is presented in great detail.
This review divides naturally into two parts, the first relating to the
description of the formalism, and the second to its application. After an
all-inclusive description of the bosonization technique, the bosonized form of
the Kondo lattice hamiltonian is constructed in detail. Next the
double-exchange ordering, Kondo singlet formation, the RKKY interaction and
spin polaron formation are described comprehensively. An in-depth analysis of
the phase diagram follows, with special emphasis on the destruction of the
ferromagnetic phase by spin-flip disorder scattering, and of recent numerical
results. The results are shown to hold for both antiferromagnetic and
ferromagnetic Kondo lattice. The general exposition is pedagogic in tone.Comment: Review, 258 pages, 19 figure
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
- …