31 research outputs found

    Design of Electrohydrodynamic Devices with Consideration of Electrostatic Energy

    No full text
    The importance of actuators that can be integrated with flexible robot structures and mechanisms has increased in recent years with the advance of soft robotics. In particular, electrohydrodynamic (EHD) actuators, which have expandable integrability to adapt to the flexible motion of soft robots, have received much attention in the field of soft robotics. Studies have deepened the understanding of steady states of EHD phenomena but nonsteady states are not well understood. We herein observe the development process of fluid in a microchannel adopting a Schlieren technique with the aid of a high-speed camera. In addition, we analyze the behavior of fluid flow in a microchannel that is designed to have pairs of parallel plate electrodes adopting a computational fluid dynamics technique. Results indicate the importance of considering flow generated by electrostatic energy, which tends to be ignored in constructing and evaluating EHD devices, and by the body force generated by the ion-drag force. By considering these effects, we estimate the development process of EHD flow and confirm the importance of considering the generation of vortices and their interactions inside the microchannel during the development of EHD devices

    Flow Control around NACA0015 Airfoil Using a Dielectric Barrier Discharge Plasma Actuator over a Wide Range of the Reynolds Number

    No full text
    In this study, an experimental investigation of separation control using a dielectric barrier discharge plasma actuator was performed on an NACA0015 airfoil over a wide range of Reynolds numbers, angles of attack, and nondimensional burst frequencies. The range of the Reynolds number was based on a chord length ranging from 2.52 × 105 to 1.008 × 106. A plasma actuator was installed at the leading edge and driven by AC voltage. Burst mode (duty-cycle) actuation was applied, with the nondimensional burst frequency ranging between 0.1–30. The control authority was evaluated using the time-averaged distribution of the pressure coefficient Cp and the calculated value of the lift coefficient Cl. The baseline flow fields were classified into three types: (1) leading-edge separation; (2) trailing-edge separation; and (3) the hysteresis between (1) and (2). The results of the actuated cases show that the control trends clearly depend on the differences in the separation conditions. In leading-edge separation, actuation with a burst frequency of approximately F+= 0.5 creates a wide negative pressure region on the suction-side surface, leading to an increase in the lift coefficient. In trailing-edge separation, several actuations alter the position of turbulent separation

    フクロウ翼型の空力性能に関する実験的研究

    No full text

    火星飛行機の全機空力特性に関する惑星環境風洞試験

    No full text
    corecore