168 research outputs found

    Analysis of switched and hybrid systems - beyond piecewise quadratic methods

    Get PDF
    This paper presents a method for stability analysis of switched and hybrid systems using polynomial and piecewise polynomial Lyapunov functions. Computation of such functions can be performed using convex optimization, based on the sum of squares decomposition of multivariate polynomials. The analysis yields several improvements over previous methods and opens up new possibilities, including the possibility of treating nonlinear vector fields and/or switching surfaces and parametric robustness analysis in a unified way

    A Converse Sum of Squares Lyapunov Result with a Degree Bound

    Full text link
    Sum of Squares programming has been used extensively over the past decade for the stability analysis of nonlinear systems but several questions remain unanswered. In this paper, we show that exponential stability of a polynomial vector field on a bounded set implies the existence of a Lyapunov function which is a sum-of-squares of polynomials. In particular, the main result states that if a system is exponentially stable on a bounded nonempty set, then there exists an SOS Lyapunov function which is exponentially decreasing on that bounded set. The proof is constructive and uses the Picard iteration. A bound on the degree of this converse Lyapunov function is also given. This result implies that semidefinite programming can be used to answer the question of stability of a polynomial vector field with a bound on complexity

    A Convex Approach to Hydrodynamic Analysis

    Full text link
    We study stability and input-state analysis of three dimensional (3D) incompressible, viscous flows with invariance in one direction. By taking advantage of this invariance property, we propose a class of Lyapunov and storage functionals. We then consider exponential stability, induced L2-norms, and input-to-state stability (ISS). For streamwise constant flows, we formulate conditions based on matrix inequalities. We show that in the case of polynomial laminar flow profiles the matrix inequalities can be checked via convex optimization. The proposed method is illustrated by an example of rotating Couette flow.Comment: Preliminary version submitted to 54rd IEEE Conference on Decision and Control, Dec. 15-18, 2015, Osaka, Japa

    Block-Diagonal Solutions to Lyapunov Inequalities and Generalisations of Diagonal Dominance

    Full text link
    Diagonally dominant matrices have many applications in systems and control theory. Linear dynamical systems with scaled diagonally dominant drift matrices, which include stable positive systems, allow for scalable stability analysis. For example, it is known that Lyapunov inequalities for this class of systems admit diagonal solutions. In this paper, we present an extension of scaled diagonally dominance to block partitioned matrices. We show that our definition describes matrices admitting block-diagonal solutions to Lyapunov inequalities and that these solutions can be computed using linear algebraic tools. We also show how in some cases the Lyapunov inequalities can be decoupled into a set of lower dimensional linear matrix inequalities, thus leading to improved scalability. We conclude by illustrating some advantages and limitations of our results with numerical examples.Comment: 6 pages, to appear in Proceedings of the Conference on Decision and Control 201

    Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials

    Full text link
    Optimization over non-negative polynomials is fundamental for nonlinear systems analysis and control. We investigate the relation between three tractable relaxations for optimizing over sparse non-negative polynomials: sparse sum-of-squares (SSOS) optimization, diagonally dominant sum-of-squares (DSOS) optimization, and scaled diagonally dominant sum-of-squares (SDSOS) optimization. We prove that the set of SSOS polynomials, an inner approximation of the cone of SOS polynomials, strictly contains the spaces of sparse DSOS/SDSOS polynomials. When applicable, therefore, SSOS optimization is less conservative than its DSOS/SDSOS counterparts. Numerical results for large-scale sparse polynomial optimization problems demonstrate this fact, and also that SSOS optimization can be faster than DSOS/SDSOS methods despite requiring the solution of semidefinite programs instead of less expensive linear/second-order cone programs.Comment: 9 pages, 3 figure

    Block Factor-width-two Matrices and Their Applications to Semidefinite and Sum-of-squares Optimization

    Full text link
    Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In this paper, we introduce a new notion of \emph{block factor-width-two matrices} and build a new hierarchy of inner and outer approximations of the cone of positive semidefinite (PSD) matrices. This notion is a block extension of the standard factor-width-two matrices, and allows for an improved inner-approximation of the PSD cone. In the context of SOS optimization, this leads to a block extension of the \emph{scaled diagonally dominant sum-of-squares (SDSOS)} polynomials. By varying a matrix partition, the notion of block factor-width-two matrices can balance a trade-off between the computation scalability and solution quality for solving semidefinite and SOS optimization. Numerical experiments on large-scale instances confirm our theoretical findings.Comment: 26 pages, 5 figures. Added a new section on the approximation quality analysis using block factor-width-two matrices. Code is available through https://github.com/zhengy09/SDPf

    Delineating Parameter Unidentifiabilities in Complex Models

    Full text link
    Scientists use mathematical modelling to understand and predict the properties of complex physical systems. In highly parameterised models there often exist relationships between parameters over which model predictions are identical, or nearly so. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, and the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast timescale subsystems, as well as the regimes in which such approximations are valid. We base our algorithm on a novel quantification of regional parametric sensitivity: multiscale sloppiness. Traditionally, the link between parametric sensitivity and the conditioning of the parameter estimation problem is made locally, through the Fisher Information Matrix. This is valid in the regime of infinitesimal measurement uncertainty. We demonstrate the duality between multiscale sloppiness and the geometry of confidence regions surrounding parameter estimates made where measurement uncertainty is non-negligible. Further theoretical relationships are provided linking multiscale sloppiness to the Likelihood-ratio test. From this, we show that a local sensitivity analysis (as typically done) is insufficient for determining the reliability of parameter estimation, even with simple (non)linear systems. Our algorithm provides a tractable alternative. We finally apply our methods to a large-scale, benchmark Systems Biology model of NF-κ\kappaB, uncovering previously unknown unidentifiabilities

    Positive Forms and Stability of Linear Time-Delay Systems

    Full text link
    We consider the problem of constructing Lyapunov functions for linear differential equations with delays. For such systems it is known that exponential stability implies the existence of a positive Lyapunov function which is quadratic on the space of continuous functions. We give an explicit parametrization of a sequence of finite-dimensional subsets of the cone of positive Lyapunov functions using positive semidefinite matrices. This allows stability analysis of linear time-delay systems to be formulated as a semidefinite program.Comment: journal version, 14 page

    Distributed Design for Decentralized Control using Chordal Decomposition and ADMM

    Full text link
    We propose a distributed design method for decentralized control by exploiting the underlying sparsity properties of the problem. Our method is based on chordal decomposition of sparse block matrices and the alternating direction method of multipliers (ADMM). We first apply a classical parameterization technique to restrict the optimal decentralized control into a convex problem that inherits the sparsity pattern of the original problem. The parameterization relies on a notion of strongly decentralized stabilization, and sufficient conditions are discussed to guarantee this notion. Then, chordal decomposition allows us to decompose the convex restriction into a problem with partially coupled constraints, and the framework of ADMM enables us to solve the decomposed problem in a distributed fashion. Consequently, the subsystems only need to share their model data with their direct neighbours, not needing a central computation. Numerical experiments demonstrate the effectiveness of the proposed method.Comment: 11 pages, 8 figures. Accepted for publication in the IEEE Transactions on Control of Network System
    • …
    corecore