154 research outputs found
Biventricular pacemaker therapy improves exercise capacity in patients with non‐obstructive hypertrophic cardiomyopathy via augmented diastolic filling on exercise
Aims Treatment options for patients with non‐obstructive hypertrophic cardiomyopathy (HCM) are limited. We sought to determine whether biventricular (BiV) pacing improves exercise capacity in HCM patients, and whether this is via augmented diastolic filling. Methods and results Thirty‐one patients with symptomatic non‐obstructive HCM were enrolled. Following device implantation, patients underwent detailed assessment of exercise diastolic filling using radionuclide ventriculography in BiV and sham pacing modes. Patients then entered an 8‐month crossover study of BiV and sham pacing in random order, to assess the effect on exercise capacity [peak oxygen consumption (VO2)]. Patients were grouped on pre‐specified analysis according to whether left ventricular end‐diastolic volume increased (+LVEDV) or was unchanged/decreased (–LVEDV) with exercise at baseline. Twenty‐nine patients (20 male, mean age 55 years) completed the study. There were 14 +LVEDV patients and 15 –LVEDV patients. Baseline peak VO2 was lower in –LVEDV patients vs. +LVEDV patients (16.2 ± 0.9 vs. 19.9 ± 1.1 mL/kg/min, P = 0.04). BiV pacing significantly increased exercise ΔLVEDV (P = 0.004) and Δstroke volume (P = 0.008) in –LVEDV patients, but not in +LVEDV patients. Left ventricular ejection fraction and end‐systolic elastance did not increase with BiV pacing in either group. This translated into significantly greater improvements in exercise capacity (peak VO2 + 1.4 mL/kg/min, P = 0.03) and quality of life scores (P = 0.02) in –LVEDV patients during the crossover study. There was no effect on left ventricular mechanical dyssynchrony in either group. Conclusion Symptomatic patients with non‐obstructive HCM may benefit from BiV pacing via augmentation of diastolic filling on exercise rather than contractile improvement. This may be due to relief of diastolic ventricular interaction. Clinical Trial Registration: ClinicalTrials.gov NCT00504647
Current Single Event Effects Compendium of Candidate Spacecraft Electronics for NASA
We present the results of single event effects (SEE) testing and analysis investigating the effects of radiation on electronics. This paper is a summary of test results
An HIF-1α/VEGF-A Axis in Cytotoxic T Cells Regulates Tumor Progression.
Cytotoxic T cells infiltrating tumors are thought to utilize HIF transcription factors during adaptation to the hypoxic tumor microenvironment. Deletion analyses of the two key HIF isoforms found that HIF-1α, but not HIF-2α, was essential for the effector state in CD8+ T cells. Furthermore, loss of HIF-1α in CD8+ T cells reduced tumor infiltration and tumor cell killing, and altered tumor vascularization. Deletion of VEGF-A, an HIF target gene, in CD8+ T cells accelerated tumorigenesis while also altering vascularization. Analyses of human breast cancer showed inverse correlations between VEGF-A expression and CD8+ T cell infiltration, and a link between T cell infiltration and vascularization. These data demonstrate that the HIF-1α/VEGF-A axis is an essential aspect of tumor immunity
US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report
This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in
Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference
Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis
The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or "priming," using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer
Differential Expression of Chemokine and Matrix Re-Modelling Genes Is Associated with Contrasting Schistosome-Induced Hepatopathology in Murine Models
The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S. japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice. In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice, reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This improved understanding of the immunopathogenesis in the murine model schistosomiasis provides the basis for a better appreciation of the complexities associated with chronic human schistosomiasis
The Prolyl Isomerase Pin1 Modulates Development of CD8+ cDC in Mice
We have identified a novel role for Pin1 as a modulator of CD8+ cDC development. Consistent with reduced numbers of CD8+ cDC in Pin1-null mice, we find that the absence of Pin1 impairs CD8+ T cell proliferation in response to infection with Listeria monocytogenes. These data suggest that, via regulation of CD8+ cDC production, Pin1 may serve as an important modulator of adaptive immunity
Strong Carbon Features and a Red Early Color in the Underluminous Type Ia SN 2022xkq
We present optical, infrared, ultraviolet, and radio observations of SN
2022xkq, an underluminous fast-declining type Ia supernova (SN Ia) in NGC 1784
( Mpc), from to 180 days after explosion. The
high-cadence observations of SN 2022xkq, a photometrically transitional and
spectroscopically 91bg-like SN Ia, cover the first days and weeks following
explosion which are critical to distinguishing between explosion scenarios. The
early light curve of SN 2022xkq has a red early color and exhibits a flux
excess which is more prominent in redder bands; this is the first time such a
feature has been seen in a transitional/91bg-like SN Ia. We also present 92
optical and 19 near-infrared (NIR) spectra, beginning 0.4 days after explosion
in the optical and 2.6 days after explosion in the NIR. SN 2022xkq exhibits a
long-lived C I 1.0693 m feature which persists until 5 days post-maximum.
We also detect C II 6580 in the pre-maximum optical spectra. These
lines are evidence for unburnt carbon that is difficult to reconcile with the
double detonation of a sub-Chandrasekhar mass white dwarf. No existing
explosion model can fully explain the photometric and spectroscopic dataset of
SN 2022xkq, but the considerable breadth of the observations is ideal for
furthering our understanding of the processes which produce faint SNe Ia.Comment: 38 pages, 16 figures, accepted for publication in ApJ, the figure 15
input models and synthetic spectra are now available at
https://zenodo.org/record/837925
- …